7 research outputs found

    Technological Aspects of Producing Surface Composites by Friction Stir Processing—A Review

    No full text
    FSP (friction stir processing) technology is a modern grain refinement method that is setting new trends in surface engineering. This technology is used not only to modify the microstructure of the surface layer of engineering materials, but increasingly more often also to produce surface composites. The application potential of FSP technology lies in its simplicity and speed of processing and in the wide range of materials that can be used as reinforcement in the composite. There are a number of solutions enabling the effective and controlled introduction of the reinforcing phase into the plasticized matrix and the production of the composite microstructure in it. The most important of them are the groove and hole methods, as well as direct friction stir processing. This review article discusses the main and less frequently used methods of producing surface composites using friction stir processing, indicates the main advantages, disadvantages and application limitations of the individual solutions, in addition to potential difficulties in effective processing. This information can be helpful in choosing a solution for a specific application

    Microstructure and Corrosion Resistance of AZ91 Magnesium Alloy after Surface Remelting Treatment

    No full text
    The effect of surface remelting treatment on the microstructure and corrosion resistance of the AZ91 magnesium alloy was studied. The surface layer was remelted by GTAW (gas tungsten arc welding). An original two-burner system with welding torches operating in a tandem configuration was used, allowing the combination of cleaning the surface from oxides with the remelting process. The studies of the corrosion resistance of the alloy included electrochemical tests and measurements of the rate of hydrogen evolution. The results showed that surface remelting treatment leads to favorable microstructural changes, manifested in strong grain refinement and a more uniform arrangement of the β-Mg17Al12 phase. The changes in the microstructure caused by remelting and the accompanying fast crystallization contributed to an increase in the corrosion resistance of the remelted samples in comparison to their non-remelted equivalents. The results obtained on the basis of the polarization curves showed three-fold lower values of the corrosion current density in the case of the remelted material than the value of the corrosion current density determined for the starting material. In turn, in the case of measurements of the electrochemical noise and corrosion rate determined by the method of measuring the rate of hydrogen evolution, this value for the remelted alloy was two times lower. The research also showed that GTAW technology is highly effective and can be a valuable alternative to laser techniques. The complete experimental details, obtained results and their analyses are presented in this paper

    Technological Aspects of Producing Surface Composites by Friction Stir Processing—A Review

    No full text
    FSP (friction stir processing) technology is a modern grain refinement method that is setting new trends in surface engineering. This technology is used not only to modify the microstructure of the surface layer of engineering materials, but increasingly more often also to produce surface composites. The application potential of FSP technology lies in its simplicity and speed of processing and in the wide range of materials that can be used as reinforcement in the composite. There are a number of solutions enabling the effective and controlled introduction of the reinforcing phase into the plasticized matrix and the production of the composite microstructure in it. The most important of them are the groove and hole methods, as well as direct friction stir processing. This review article discusses the main and less frequently used methods of producing surface composites using friction stir processing, indicates the main advantages, disadvantages and application limitations of the individual solutions, in addition to potential difficulties in effective processing. This information can be helpful in choosing a solution for a specific application

    Special Issue: Advance in Friction Stir Processed Materials

    No full text
    In recent years, on the basis of FSP/FSW technologies, a number of new solutions, methods and variants have been developed, constituting not only proof of the continuous evolution of FSP/FSW technologies, but also of the huge scientific and application potential hidden in these methods [...

    Possibilities of RDF Pyrolysis Products Utilization in the Face of the Energy Crisis

    No full text
    The main goal of the study was to assess the possibility of practical use of products of pyrolysis of refuse-derived fuel (RDF), i.e., pyrolysis gas, biochar and pyrolysis oil, as an alternative to standard fossil fuels. The subject matter of the paper reaches out to the challenges faced by the global economy, not only in the context of the energy crisis, but also in the context of the energy transformation currently beginning in Europe. The increase in fuel and energy prices prompts countries to look for alternative solutions to Russian minerals. At the same time, the growing amount of municipal waste forces the implementation of solutions based on energy recovery (the amount of municipal waste per EU inhabitant in 2021 is 530 kg). One such solution is pyrolysis of RDF, i.e., fuels produced from the over-sieve fraction of municipal waste. In Poland, insufficient processing capacity of thermal waste conversion plants has led to significant surpluses of RDF (1.2 million Mg of undeveloped RDF in Poland in 2021). RDF, due to their high calorific value, can be a valuable energy resource (16–18 MJ/k). This issue is analyzed in this study
    corecore