79 research outputs found
Does political information influence voter turnout at the municipal level?
Political information is key to political competence. The relationship between political information and the decision to vote, however, is understudied at the municipal level of government. Based on a survey of 3,200 electors in the province of Quebec, our results highlight the importance of information in votersâ decision to go to the polls as well as how this information affects other variables. Our analysis shows that the more a voter is knowledgeable about the candidatesâ platforms and projects, the more likely he or she is to vote. Our findings extend knowledge regarding political information, political competence and turnout from other levels of government to the municipal level.Si lâinformation politique contribue Ă la formation de la compĂ©tence politique, peu de travaux analysent la relation entre lâinformation politique et la dĂ©cision de se rendre aux urnes Ă lâĂ©chelle municipale. Ă partir dâune enquĂȘte menĂ©e auprĂšs de 3 200 Ă©lecteurâątriceâąs de la province de QuĂ©bec, nous montrons dâune part lâimportance que dĂ©tient lâinformation chez les Ă©lecteurâątriceâąs dans la dĂ©cision dâaller voter et dâautre part la façon dont cette information est susceptible dâinfluencer dâautres variables. Notre analyse montre que plus unâąe Ă©lecteurâątrice est informĂ©âąe sur les programmes et les projets des candidatâąeâąs, plus il.elle est susceptible de voter. Ces rĂ©sultats Ă©largissent ainsi plus largement les connaissances concernant lâinformation politique, la compĂ©tence politique et la participation Ă©lectorale
Les gouvernements manipulent-ils leurs prévisions budgétaires? : le cas des erreurs de prévision de revenus dans les provinces canadiennes de 1986 à 2004
Tableau dâhonneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdoctorales, 2007-2008
A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes
Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94âMb assembly with high contiguity (359 scaffolds for a N50 of 706.5âkb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plantâpathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species
Reaction intermediates and molecular mechanism of Peroxynitrite activation by NO synthases
The activation of peroxynitrite (PN) by hemoproteins, which leads to its detoxification or on the contrary to the enhancement of its cytotoxic activity, is a reaction of physiological importance that is still poorly understood. It has been known for some years that the reaction of hemoproteins, notably cytochrome P450, with PN leads to the build-up of an intermediate species with a Soret band at ~435 nm (I435). The nature of this intermediate is however debated. On the one hand, I435 has been presented as a Compound-II species that can be photo-activated to Compound I. A competing alternative involves the assignment of I435 to a ferric-nitrosyl species. Alike the cytochromes P450, the build-up of I435 occurs in NO-synthases (NOSs) upon their reaction with excess PN. Interestingly, the NOS isoforms vary in their capacity to detoxify/activate PN although they all show the build-up of I435. To better understand PN activation/detoxification by heme proteins, a definitive assignment of I435 is needed. Here we used a combination of fine kinetic analysis under specific conditions (pH, PN concentrations and PN/NOSs ratios) to probe the formation of I435. These studies revealed that I435 is not formed upon homolytic cleavage of the O-O bond of PN but that it arises from side-reactions associated with excess PN. Characterization of I435 by resonance Raman spectroscopy allowed its identification as a ferric iron-nitrosyl complex. Together, our study indicates that the model used so far to depict PN interactions with hemo-thiolate proteins, i.e. leading to the formation and accumulation of Compound II, needs to be reconsidered
Nunataryuk field campaigns: understanding the origin and fate of terrestrial organic matter in the coastal waters of the Mackenzie Delta region
Climate warming and related drivers of soil thermal change in the Arctic are expected to modify the distribution and dynamics of carbon contained in perennially frozen grounds. Thawing of permafrost in the Mackenzie River watershed of northwestern Canada, coupled with increases in river discharge and coastal erosion, triggers the release of terrestrial organic matter (OMt) from the largest Arctic drainage basin in North America into the Arctic Ocean. While this process is ongoing and its rate is accelerating, the fate of the newly mobilized organic matter as it transits from the watershed through the delta and into the marine system remains poorly understood. In the framework of the European Horizon 2020 Nunataryuk programme, and as part of the Work Package 4 (WP4) Coastal Waters theme, four field expeditions were conducted in the Mackenzie Delta region and southern Beaufort Sea from April to September 2019. The temporal sampling design allowed the survey of ambient conditions in the coastal waters under full ice cover prior to the spring freshet, during ice breakup in summer, and anterior to the freeze-up period in fall. To capture the fluvial-marine transition zone, and with distinct challenges related to shallow waters and changing seasonal and meteorological conditions, the field sampling was conducted in close partnership with members of the communities of Aklavik, Inuvik and Tuktoyaktuk, using several platforms, namely helicopters, snowmobiles, and small boats. Water column profiles of physical and optical variables were measured in situ, while surface water, groundwater, and sediment samples were collected and preserved for the determination of the composition and sources of OMt, including particulate and dissolved organic carbon (POC and DOC), and colored dissolved organic matter (CDOM), as well as a suite of physical, chemical, and biological variables. Here we present an overview of the standardized datasets, including hydrographic profiles, remote sensing reflectance, temperature and salinity, particle absorption, nutrients, dissolved organic carbon, particulate organic carbon, particulate organic nitrogen, CDOM absorption, fluorescent dissolved organic matter intensity, suspended particulate matter, total particulate carbon, total particulate nitrogen, stable water isotopes, radon in water, bacterial abundance, and a string of phytoplankton pigments including total chlorophyll. Datasets and related metadata can be found in (10.1594/PANGAEA.937587). © 2023 Copernicus GmbH. All rights reserved
THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
- âŠ