140 research outputs found
The acrylamide content of our foods
It has been known since 2002 [5] that during the heat treatment production of foods that contain both carbohydrates and amino acids, acrylamide is also formed among the transformation products in a Maillard-type reaction, depending on the chemical composition of the raw materials and the temperature used in the technology. According to the literature, acrylamide may initiate carcinogenic processes in the human body. In the paper, the Maillard reaction and the process of acrylamide formation is outlined. The biochemical significance of acrylamide is also discussed, as well as its toxic and carcinogenic effects on the human body. In 2017, manufacturers’ measures aimed at decreasing acrylamide levels in heat treated, mainly baked, foods, as well as mandatory laboratory testing were regulated by a European Union Commission decree, and maxi-mum permissible acrylamide levels in the foods in question were also set. The regulation to be applied from 11. April 2018. [9] In this connection, some laboratory test methods available in the literature will be described, including one that is based on a non-chroma-tographic principle. Prior to the publication of the EU Commission decree, between 2006 and November 2017, the acrylamide contents of 250 drinking water samples, 715 potato chip samples and 67 other food samples (for a total of 1033 samples) were tested at the request of our partners. The limit of quantification (LOQ) of our analytical tests was 1.0 µg/L for drinking waters and 10 µg/kg for solid foods. Primarily the aim of this manuscript is to refer about investigation of solid food products, therefore the details of gas chromatographic analysis of drinking water samples will be only sketched as a brief completing information. It should be noted that, during the period in question, there were no legal limit values in the EU for acrylamide for solid food products
Nitrát- és nitrit-vegyületek jelentősége az élelmiszerekben = Nitrate and nitrite compounds in several food products
E dolgozatban nĂ©hány, fontosnak ĂtĂ©lhetĹ‘ adatot foglaltam össze vázlatosan Ă©s ismeretet Ă©lelmiszereink nitrit- Ă©s nitrát-tartalmárĂłl Ă©s azok toxikolĂłgiai jellemzĹ‘irĹ‘l. A nitrát-redukciĂł rĂ©vĂ©n keletkezĹ‘ nitritek Ă©s a nitritek aminokkal lezajlĂł reakciĂłjábĂłl keletkezĹ‘ termĂ©kek – a nitrĂłzaminok – Ă©lelmiszerbiztonsági jelentĹ‘sĂ©gĂ©t is Ă©rintettĂĽk. Rámutattunk, hogy a jelenleg rendelkezĂ©sre állĂł szakirodalmi források szerint Ă©lelmiszerbiztonsági szempontbĂłl nem a nitrátok, hanem a belĹ‘lĂĽk a metabolizmus Ăştján kĂ©pzĹ‘dĹ‘, fentebb emlĂtett termĂ©kek az aggályosak. BeszĂ©ltĂĽnk arrĂłl is, hogy az emberi szervezetbe nemcsak endogĂ©n, hanem exogĂ©n eredetű nitrĂłzaminok is bejutnak, fĹ‘kĂ©nt a fĂĽstölĂ©ssel kezelt Ă©lelmiszerek rĂ©vĂ©n. Bemutattam nĂ©hány, 2007-bĹ‘l származĂł, az Ă©lelmiszereket előállĂtĂł Ă©s forgalmazĂł szervezetek által önkĂ©ntesen elvĂ©geztetett magán laboratĂłriumi vizsgálati eredmĂ©nyt is. A laboratĂłriumi eredmĂ©nyek tanĂşsága szerint a vizsgált kĂĽlönbözĹ‘ Ă©lelmiszercsoportnál a nitrátok kb. 76%, a nitritek közel 95%-ban voltak kimutathatĂłak. Az Ă©lelmiszerek tĂpusa Ă©s a vonatkozĂł rĂ©szletes rendeleti elĹ‘Ărások alapján a kifogásolhatĂł minták aránya csak 7,7 Ă©s 15% között ingadozott. A nitrátokra vonatkozĂł vizsgálati eredmĂ©nyek átfogĂł Ă©rtĂ©kelĂ©sĂ©nĂ©l, hĂşsipari termĂ©keknĂ©l itt önkĂ©nyesen a >300, növĂ©nyi Ă©lelmiszereknĂ©l a >2000 mg/kg mennyisĂ©geket vettĂĽk alapul, ezĂ©rt a fenti százalĂ©kos adatok csak tájĂ©koztatĂł jellegűeknek tekinthetĹ‘ek. A rendelkezĂ©sre állĂł irodalmi források alapján becsĂĽlve jelenlegi táplálkozási szokásaink szerint a napi bevitel Ă©lelmiszerekkel 0,1 – 1,0 µg nitrĂłzamin, ami nem jelent közvetlen veszĂ©lyt, de nem árt csökkenteni a bevitel arányát: • HĂşsfeldolgozásnál a nitrit- Ă©s nitrát-adagolást korlátozni kell, de a botulizmus veszĂ©lye miatt egyelĹ‘re nem hagyhatĂłk el; • Antioxidáns hatásĂş adalĂ©kok használatával csökkenthetĹ‘ a nitrĂłzaminok kártĂ©kony hatása (aszkorbinsav, tokoferolok, kĂ©n-dioxid); • A zöldsĂ©gfĂ©lĂ©k nitrát-tartalmának mĂ©rsĂ©klĂ©se a műtrágyázás szabályozásával. The nitrogen in the atmosphere goes into the soul via several physical and chemical processes where take place different other chemical reactions. The anorganic nitrogen compounds get into the foodstuffs basically via three ways: 1. From naturally sources, from the consumable plants; 2. Artificially, by the fertilisation with nitrogen-containing compounds, certainly transferring by the plants; 3. Artificially, using nitrogen containing, mainly by the meat industrial products and several cheeses; It is well known for long time ago, if the meat is exposed by wood smoke, or it is salted, or dried decreasing its water content, the storage life of product could be elongated. The last two methods decrease not only the physical water content, but reduce the water activity available for the microbiological processes. Using these conservation methods, the bacon, and later the sausage become day-by-day foodstuffs. The English name of “sausage” means several salting technique from the Latin “salus – salted” word. Using the curing may be to keep down the dangerous bacteria Clostridium botulinum effectively, which is the causative agent of so called “sausage poisoning”. The method of curing is an old treatment. The curing salt mixes containing 1-2% nitrite and 0,5% nitrate, have delivered effective protection – mainly in the case of sausages – against the anaerobic bacteria, namely the Clostridium botulini, while the curing salt mixes themselves functioned as a cyto-poisoning agents. The nitrites which are the microbiological metabolites of nitrates, are strong oxidative agents. So the usage of nitrate containing curing media delays the disintegration of oxy-haemoglobin, while the reduction of nitrates to nitrite. Accordingly the nitrate curing in the case of meat industrial products give an advantageous influence to the optical character of them. The basic material of the curing mix is the kitchen salt (sodium chlorine), which is mixed with 1-2% sodium or potassium nitrate, or 0,5% sodium or potassium nitrite. In the curing salt mix the NaCl is the water distraction agent, the nitrates and nitrites have bacteria killing capability. The legal amount of these compounds, are limited as the predictions of Hungarian Codex Alimentarius (MÉ 1- 2/95/2). In the Hungarian practice the legal limits are between the 50 and 300 mg/kg depending on the type of the product. The nitrates itself do not mean as a danger source for the human. Their harmful effect comes from the metabolism to nitrites and to nitrosamines. These processes take place during the making of dishes, under storage, or at the digestion of the foods in the intestine system. The majority of the amount of NO3 depletes from the gut of healthy human, but the arising nitrite coming from the remaining part of nitrate compounds may cause approx 10% loss of haemoglobin causing methemoglobinemia. The figure 4th shows the reduction process of nitrates. The secondary amines (sometimes the primer and tertiary amines too) with the nitrites gives stabile N-nitroso-derivative (Figure 5th). Between them the dimethyl-nitrosamine is considerable to the most poisoning compound. The nitrosamines are strong poisons, they are carcinogens, already at less concentrations too. The lethal dose of nitrosamines by the data of Joint FAO/WHO Expert Committee On Food Additives (JECFA) in indirect way of nitrates and nitrites are the next: NO3 = 0 – 3,7 mg/bwkg, lethal dose: 8 – 15 g/person NO2 = 0 – 0,07 mg/bwkg, lethal dose: 0,18 – 2,5 g/person Into the human organism may get into not only endogen but external origin nitrosamines too, mainly by the fumigated food stuffs. That is the reason why it is advised, to avoid the human organism from the loading of endogen and external nitrosamine, if it is possible. In the paper the nitrite and nitrate levels of several samples were illustrated analysed by the laboratories of WESSLING Hungary Ltd Budapest
KĂĽlönbözĹ‘ vĂz- Ă©s Ă©lelmiszerminták arzĂ©ntartalmának vizsgálati eredmĂ©nyei = Results of the arsenic content analysis of different water and food samples
Az emberisĂ©g fejlĹ‘dĂ©se során az utĂłbbi nĂ©hány száz Ă©vben hihetetlen technikai Ă©s tudományos fejlĹ‘dĂ©sen ment keresztĂĽl. Az iparosĂtás a kĂ©miai anyagok egyre nagyobb arányĂş használata soha nem látott fizikai Ă©s kĂ©miai terhelĂ©st rĂłtt az ember Ă©lĹ‘helyĂ©re. E terhelĂ©s a környezet, s egyben a vĂzadĂł környezeti elemek növekvĹ‘ szennyezĂ©sĂ©t eredmĂ©nyezte, Ăgy az emberisĂ©g az Ă©lelmiszerek fogyasztásával számos olyan vegyĂĽlet, elem toxikus hatásával kell számolnia, amely az egĂ©szsĂ©gĂ©t veszĂ©lyeztetheti. Az ipari tevĂ©kenysĂ©g okozta szennyezĹ‘dĂ©seken felĂĽl termĂ©szetes forrásokbĂłl is kerĂĽlhet nemkĂvánatos anyag az Ă©lelmiszerláncba. Ilyen az ivĂłvĂzzel Ă©s a szilárd Ă©lelmiszerekkel a szervezetĂĽnkbe jutĂł elem az arzĂ©n, amely szervetlen Ă©s szerves vegyĂĽletekhez kötött formában van jelen környezetĂĽnkben. Dolgozatomban arra keresem a választ, hogy ismerve az arzĂ©nnek az ember egĂ©szsĂ©gĂ©re gyakorolt káros hatásait, indokoltnak látszik-e az EurĂłpai UniĂł által elĹ‘Ărt radikális határĂ©rtĂ©k változtatás, amely az ivĂłvizek mĂ©g megengedhetĹ‘ arzĂ©ntartalmát 50 pg/L-rĹ‘l 10 pg/L-re mĂłdosĂtotta. A WESSLING Hungary Kft. Élelmiszerbiztonsági Ăśzletága laboratĂłriumainak mĂ©rĂ©si eredmĂ©nyei szerint, illetve az áttanulmányozott egyĂ©b adatok tanĂşsága alapján nagy valĂłszĂnűsĂ©ggel állĂthatĂł, hogy Magyarországon az ivĂłvizekben a 2013 Ă©v vĂ©gĂ©ig Ă©rvĂ©nyben lĂ©vĹ‘ 50 pg/L maximálisan megengedett határĂ©rtĂ©k mellett nem kellett a magyar populáciĂłt Ă©rintĹ‘, az arzĂ©n toxikus hatásának következtĂ©ben előállĂł egĂ©szsĂ©gkárosodástĂłl tartani. A rendelkezĂ©semre állĂł szakirodalmi anyagok között egy frissen megjelent dolgozatra bukkantam, amely rĂ©szletesen foglalkozik a magyar emberek arzĂ©n-terhelĂ©sĂ©nek forrásaival Ă©s annak mĂ©rtĂ©kĂ©vel. A szerzĹ‘k megállapĂtásai szintĂ©n azt a vĂ©lemĂ©nyt támasztják alá, ami szerint a hazai arzĂ©nterhelĂ©s - bár nem elhanyagolhatĂł - várhatĂłan nem fog Ă©szlelhetĹ‘ egĂ©szsĂ©gromlást okozni a Magyarország polgárainál. During its development, mankind has experienced incredible technical and scientific development over the last several hundred years. A physical and chemical burden never before seen has been imposed on the living environment of people by industrialization and the ever increasing use of chemicals. This burden resulted in the increasing contamination of the environment, including aquiferous environmental elements, and so mankind has to consider, when consuming food, the toxic effects of many compounds that can harm one’s health. In addition to contamination caused by industrial activities, undesirable substances can enter the food chain from natural sources as well. One of these elements, entering our bodies with drinking water and solid foods, is arsenic which is present in our environment bound in both organic and inorganic compounds. In this paper, the answer is sought to the question whether, knowing the harmful effects of arsenic on people’s health, the radical change in limit value by the European Union which modified the allowable arsenic content of drinking water from 50 pg/L to 10 pg/L seems justified. According to the measurement results of the laboratory of the Food Safety Business Unit of WESSLING Hungary Kft., and also based on all other data studied, it can be stated with high certainty that with the maximum allowed value of 50 pg/L that was in effect for dinking waters in Hungary until the end of 2013, the Hungarian population did not have to be afraid of health damages caused by the toxic effect of arsenic. Among the literature material available to me, I found a recently published paper, dealing in detail with the sources and extent of the arsenic load of Hungarian people. Conclusions of the authors also support the opinion that the domestic arsenic load, although not negligible, is not expected to cause observable health deterioration for the citizens of Hungary
Functional foods
Functional foods are products that contain the ingredients in sufficient quantities, but have a greater impact on vital functions than traditional foods, contribute to the prevention of diseases, have a health protection effect, and thus overall they have a par-ticularly beneficial effect on the human body. The key question in the production of functional foods is to determine what additional component should be added to the product so that the desired functional effect, especially supportive of life process-es, can develop in the human body. Before being released for public consumption, the physiological effects of functional foods, the good manufacturing practice of the product, consumer needs, food safety related to functional foods and legal regulation should be clarified. The production of functional foods is a relatively new area where technology development and consumer acceptance are still taking place today, so producers and consumers can even co-manage processes that will be incorporated into traditional food production practices in a few years’ time. In the first half of our article, the basic concepts of functional foods are discussed, then the characteristic properties of some functional foods produced by supplement-ing foods with chemical substances are described. Due to the length limitations of the article, discussion of products manufactured with microbiological live cultures is planned for a later time
Counterfeiting of milk and dairy products, and analytical methods suitable for the detection of counterfeiting
In the first part of this review article, the authors write about food counterfeiting in general, and then seek answers to the following questions: Are foods counterfeited today? What does food counterfeiting means and how to combat it? What official measures should be taken when food counterfeiting is detected? What sanctions can be imposed in case of food counterfeiting? In the context of counterfeiting milk and dairy products, the authors of the article report on the counterfeiting of milk from various animal breeds, such as buffalo, goat’s and sheep’s milk, as well as breast milk using cow’s milk, and also on mixing soy milk to cow’s milk. They also describe the detection of whey and buttermilk in milk, the determination of whey protein in dairy products, the analysis of milk produced from milk powder and other possibilities of milk and dairy product counterfeiting. Finally, they report on the detection of other fats in milk, butter and ghee (a traditional Indian butter formula made from buffalo milk – the Editor), the watering of milk, the determination of the extent of heat treatment of milk and dairy products, and the detection of the amount of spoiled milk unfit for consumption. The manuscript also describes the principles of analytical methods suitable for the detection of counterfeiting
Új élelmiszer-jelölési eljárások alkalmazásba vétele ütemének elemzése Magyarországon az élelmiszer-vállalkozások körében = Practical application of new food labelling regulations by Hungarian food businesses
Az Ă©lelmiszerek piacán a fogyasztĂłvĂ©delem magas szintje Ă©s a fogyasztĂłk tájĂ©koztatáshoz valĂł joga biztosĂtásának fontos eszközei az Ă©lelmiszertermĂ©kek csomagolásán feltĂĽntetett informáciĂłk, amelyek egyik legfontosabb szerepe, hogy a fogyasztĂłk megfelelĹ‘ tájĂ©koztatás alapján tudjanak dönteni az Ă©lelmiszerek között, Ă©s megelĹ‘zhetĹ‘ legyen a fogyasztĂłkat fĂ©lrevezetĹ‘ gyakorlat alkalmazása. Ezen cĂ©lok által vezĂ©relve a jogalkotĂł az Ă©lelmiszer-jelölĂ©si elĹ‘Ărásokat idĹ‘rĹ‘l-idĹ‘re mĂłdosĂtja, illetve Ăşj követelmĂ©nyeket lĂ©ptet Ă©letbe. Kutatásunk során arra kerestĂĽk a választ, hogy az Ăşj követelmĂ©nyekhez valĂł alkalmazkodás, illetve azok gyakorlati alkalmazásba vĂ©tele milyen ĂĽtemben megy vĂ©gbe a hazai Ă©lelmiszer-előállĂtĂłk, -forgalmazĂłk esetĂ©ben, illetve ezen folyamat dinamikáját befolyásolják-e az Ă©lelmiszer-vállalkozások olyan jellemzĹ‘i, mint pl. a gyártott termĂ©k jellege, az adott Ă©lelmiszer-vállalkozás földrajzi elhelyezkedĂ©se, stb. A vizsgálathoz a fogyasztĂłk Ă©lelmiszerekkel kapcsolatos tájĂ©koztatásárĂłl szĂłlĂł 1169/2011/EU rendelet egyes követelmĂ©nyeit választottuk ki, illetve ezek vonatkozásában 2013. januárban Ă©s 2014. januárban 180-180 db Ă©lelmiszeripari termĂ©k vizsgálatát vĂ©geztĂĽk el. A kutatás eredmĂ©nyei alapján megállapĂthatĂł, hogy az Ăşj jelölĂ©si követelmĂ©nyekhez valĂł alkalmazkodás nem egysĂ©gesen zajlik az Ă©lelmiszeripari termĂ©kek piacán, kĂĽlönbsĂ©gek figyelhetĹ‘ek meg termĂ©kkategĂłriánkĂ©nt, jelölĂ©si elĹ‘ĂrásonkĂ©nt, illetve az Ă©lelmiszerek jelölĂ©sĂ©Ă©rt felelĹ‘s Ă©lelmiszer-vállalkozások jellemzĹ‘i alapján. A vizsgálat adatai fontos segĂtsĂ©get nyĂşjthatnak azon eszközök meghatározásában Ă©s specifikálásában, amelyek cĂ©lja az Ă©lelmiszer-vállalkozások segĂtĂ©se az Ăşj jelölĂ©si követelmĂ©nyek jobb megĂ©rtĂ©sĂ©ben Ă©s hatĂ©konyabb bevezetĂ©sĂ©ben. By examining the process of adopting new labelling requirements of Regulation (EU) No 1169/2011 into practice it can be stated that adaptation to new labelling requirements does not happen in a uniform way all over the market of food industry products, there are differences by product category, by labelling requirement, and also by the characteristics of food businesses responsible for food labelling. Data of this research can provide important help in identifying and specifying those tools that can help food businesses to better understand new labelling requirements and implement them more effectively
- …