20 research outputs found
Bilosomes as a promising nanoplatform for oral delivery of an alkaloid nutraceutical: improved pharmacokinetic profile and snowballed hypoglycemic effect in diabetic rats
Diabetes mellitus is a life-threatening metabolic disease. At the moment, there is no effective treatment available to combat it. In this study, we aimed to develop berberine-loaded bilosomes (BER-BLS) to boost the oral bioavailability and therapeutic efficacy of berberine, a natural antidiabetic medication. The BER-BLS was fabricated using a thin-film hydration strategy and optimized using a central composite design (face-centered). The average vesicle size, entrapment efficiency, and surface charge of the optimized BER-BLS preparation were 196.5 nm, 89.7%, (-) 36.4 mV, respectively. In addition, it exhibited higher stability and better-sustained release of berberine than the berberine solution (BER-SOL). BER-BLS and BER-SOL were administered to streptozocin-induced diabetic rats. The optimized BER-BLS formulation had a significant hypoglycemic impact, with a maximum blood glucose decrease of 41%, whereas BER-SOL only reduced blood glucose by 19%. Furthermore, the pharmacological effect of oral BER-BLS and BER-SOL corresponded to 99.3% and 31.7%, respectively, when compared to subcutaneous insulin (1 IU). A pharmacokinetic analysis found a 6.4-fold rise in the relative bioavailability of berberine in BER-BLS when compared to BER-SOL at a dosage of 100 mg/kg body weight. Histopathological investigation revealed that BER-BLS is suitable for oral administration. Our data demonstrate that BLS is a potential nanocarrier for berberine administration, enhancing its oral bioavailability and antidiabetic activity
Greenness assessment of HPLC analytical methods with common detectors for assay of paracetamol and related materials in drug products and biological fluids
Abstract
Paracetamol is one of the most widely consumed analgesic and antipyretic medications worldwide. It is frequently analyzed in many quality control (QC) laboratories in pharmaceutical companies, either in raw materials or drug products. It was reported that paracetamol self-toxicity often occurs, leading to the frequent analysis of paracetamol in toxicological centers in biological fluids. Green analytical chemistry (GAC) is growing to be a global philosophy; therefore, the high frequency of paracetamol analysis poses potential concerns. Chromatographic analytical methods used for the daily analysis of paracetamol could be a potential risk to the environment or the health of the analysts if not thoroughly considered. The presented study aims to establish greenness assessments of nine HPLC methods used to assay paracetamol in raw materials and drug products and twenty-one HPLC methods. The reason for selecting HPLC methods of analysis to be the core of the study is the known reproducibility, reliability and availability in most QC laboratories. The most commonly used metric systems for greenness evaluation are the Analytical GREEnness (AGREE), the eco-scale assessment (ESA) and the national environmental methods index (NEMI) which have been used in this comparative study. The greenest chromatographic method for the analysis of paracetamol in raw materials and drug products was introduced by Rao et al. (the obtained scores were ESA = 76 and AGREE = 0.62, while the greenest chromatographic method for the analysis of paracetamol in biological fluids was proposed by Modick et al.). The obtained scores were ESA = 85 and AGREE = 0.7. The NEMI tool proved to have limited performance compared to other metric systems, hence it could not be used alone. Accordingly, the collaboration of NEMI results with ESA and AGREE for greenness assessment is highly recommended to reach appropriate conclusions
Facile conversion of the quinone-semicarbazone chromophore of Naftazone into a fluorescent quinol-semicarbazide: kinetic study and analysis of naftazone in pharmaceuticals and human serum
Naftazone is a quinone-semi carbazone drug that possesses a strong orange color, and hence it was usually analyzed colorimetrically or by HPLC-UV. However, these methods are not sensitive enough to determine naftazone in biological samples. Naftazone lacks intrinsic fluorescence and does not possess easily derivatizable functional groups. In this contribution, we introduced the first spectrofluorimetric method for naftazone assay through reduction-elicited fluorogenic derivatization through the reduction of its quinone-semicarbazone moiety to the corresponding quinol-semicarbazide derivative by potassium borohydride as a reduction probe. The solvent-dependent fluorescence of the reaction product was studied in various protic and aprotic solvents. Eventually, the fluorescence of the reduced naftazone was measured in 2-propanol at λemission of 350 nm after excitation at λecxitation of 295 nm. The relative fluorescence intensity was linearly correlated to the drug concentration (r = 0.9995) from 10.0 to 500 ng/mL with high sensitivity, where the lower detection limit was 2.9 ng/mL. Hence, the method was effectively applied for naftazone tablets quality control with a mean %recovery of 100.3 ± 1.5, and the results agreed with those of the comparison HPLC-UV method. Furthermore, a new salting-out assisted liquid-liquid extraction (SALLE) method was established for naftazone extraction from human serum, followed by its determination using the developed reduction-based fluorogenic method. The developed SALLE method showed excellent recovery for naftazone from human serum (92.3−106.5%) with good precision (RSD ≤ 6.8%). Additionally, the reaction of naftazone with potassium borohydride was kinetically monitored, and it was found to follow pseudo-first-order kinetics with an activation energy of 43.8 kcal/mol. The developed method’s greenness was approved using three green analytical chemistry metrics
Bilosomes as a promising nanoplatform for oral delivery of an alkaloid nutraceutical:improved pharmacokinetic profile and snowballed hypoglycemic effect in diabetic rats
Diabetes mellitus is a life-threatening metabolic disease. At the moment, there is no effective treatment available to combat it. In this study, we aimed to develop berberine-loaded bilosomes (BER-BLS) to boost the oral bioavailability and therapeutic efficacy of berberine, a natural antidiabetic medication. The BER-BLS was fabricated using a thin-film hydration strategy and optimized using a central composite design (face-centered). The average vesicle size, entrapment efficiency, and surface charge of the optimized BER-BLS preparation were 196.5 nm, 89.7%, (−) 36.4 mV, respectively. In addition, it exhibited higher stability and better-sustained release of berberine than the berberine solution (BER-SOL). BER-BLS and BER-SOL were administered to streptozocin-induced diabetic rats. The optimized BER-BLS formulation had a significant hypoglycemic impact, with a maximum blood glucose decrease of 41%, whereas BER-SOL only reduced blood glucose by 19%. Furthermore, the pharmacological effect of oral BER-BLS and BER-SOL corresponded to 99.3% and 31.7%, respectively, when compared to subcutaneous insulin (1 IU). A pharmacokinetic analysis found a 6.4-fold rise in the relative bioavailability of berberine in BER-BLS when compared to BER-SOL at a dosage of 100 mg/kg body weight. Histopathological investigation revealed that BER-BLS is suitable for oral administration. Our data demonstrate that BLS is a potential nanocarrier for berberine administration, enhancing its oral bioavailability and antidiabetic activity
Lipid nanocarriers overlaid with chitosan for brain delivery of berberine via the nasal route
This research aimed to design, optimize, and evaluate berberine-laden nanostructured lipid carriers overlaid with chitosan (BER-CTS-NLCs) for efficient brain delivery via the intranasal route. The nanostructured lipid carriers containing berberine (BER-NLCs) were formulated via hot homogenization and ultrasonication strategy and optimized for the influence of a variety of causal variables, including the amount of glycerol monostearate (solid lipid), poloxamer 407 (surfactant) concentration, and oleic acid (liquid lipid) amount, on size of the particles, entrapment, and the total drug release after 24 h. The optimal BER-NLCs formulation was then coated with chitosan. Their diameter, in vitro release, surface charge, morphology, ex vivo permeability, pH, histological, and in vivo (pharmacokinetics and brain uptake) parameters were estimated. BER-CTS-NLCs had a size of 180.9 ± 4.3 nm, sustained-release properties, positive surface charge of 36.8 mV, and augmented ex-vivo permeation via nasal mucosa. The histopathological assessment revealed that the BER-CTS-NLCs system is safe for nasal delivery. Pharmacokinetic and brain accumulation experiments showed that animals treated intranasally with BER-CTS-NLCs had substantially greater drug levels in the brain. The ratios of BER brain/blood levels at 30 min, AUCbrain/AUCblood, drug transport percentage, and drug targeting efficiency for BER-CTS-NLCs (IN) were higher compared to BER solution (IN), suggesting enhanced brain targeting. The optimized nanoparticulate system is speculated to be a successful approach for boosting the effect of BER in treating CNS diseases, such as Alzheimer’s disease, through intranasal therapy
Innovative pulmonary targeting of terbutaline sulfate-laded novasomes for non-invasive tackling of asthma: statistical optimization and comparative in vitro/in vivo evaluation.
Asthma represents a globally serious non-communicable ailment with significant public health outcomes for both pediatrics and adults triggering vast morbidity and fatality in critical cases. The β2-adrenoceptor agonist, terbutaline sulfate (TBN), is harnessed as a bronchodilator for monitoring asthma noising symptoms. Nevertheless, the hepatic first-pass metabolism correlated with TBN oral administration mitigates its clinical performance. Likewise, the regimens of inhaled TBN dosage forms restrict its exploitation. Consequently, this work is concerned with the assimilation of TBN into a novel non-phospholipid nanovesicular paradigm termed novasomes (NVS) for direct and effective TBN pulmonary targeting. TBN-NVS were tailored based on the thin film hydration method and Box-Behnken design was applied to statistically optimize the formulation variables. Also, the aerodynamic pattern of the optimal TBN-NVS was explored via cascade impaction. Moreover, comparative pharmacokinetic studies were conducted using a rat model. TBN elicited encapsulation efficiency as high as 70%. The optimized TBN-NVS formulation disclosed an average nano-size of 223.89 nm, ζ potential of −31.17 mV and a sustained drug release up to 24 h. Additionally, it manifested snowballed in vitro lung deposition behavior in cascade impactor with a fine particle fraction of 86.44%. In vivo histopathological studies verified safety of intratracheally-administered TBN-NVS. The pharmacokinetic studies divulged 3.88-fold accentuation in TBN bioavailability from the optimum TBN-NVS versus the oral TBN solution. Concisely, the results proposed that NVS are an auspicious nanovector for TBN pulmonary delivery with integral curbing of the disease owing to target specificity
Tunable polymeric mixed micellar nanoassemblies of Lutrol F127/Gelucire 44/14 for oral delivery of praziquantel: a promising nanovector against hymenolepis nana in experimentally-infected rats
Hymenolepiasis represents a parasitic infection of common prevalence in pediatrics with intimidating impacts, particularly amongst immunocompromised patients. The present work aimed to snowball the curative outcomes of the current mainstay of hymenolepiasis chemotherapy, praziquantel (PRZ), through assembly of polymeric mixed micelles (PMMs). Such innovative nano-cargo could consolidate PRZ hydrosolubility, extend its circulation time and eventually upraise its bioavailability, thus accomplishing a nanoparadigm for hymenolepiasis tackling at lower dose levels. For consummating this goal, PRZ-PMMs were tailored via thin-film hydration technique integrating a binary system of Lutrol F127 and Gelucire 44/14. Box-Behnken design was planned for optimizing the nanoformulation variables employing Design-Expert® software. Also, in Hymenolepis nana-infected rats, the pharmacodynamics of the optimal micellar formulation versus the analogous crude PRZ suspension were scrutinized on the 1st and 3rd days after administration of a single oral dose (12.5 or 25 mg/kg). Moreover, in vitro ovicidal activity of the monitored formulations was estimated utilizing Fuchsin vital stain. Furthermore, the in vivo pharmacokinetics were assessed in rats. The optimum PRZ-PMMs disclosed conciliation between thermodynamic and kinetic stability, high entrapment efficiency (86.29%), spherical nanosized morphology (15.18 nm), and controlled-release characteristics over 24 h (78.22%). 1H NMR studies verified PRZ assimilation within the micellar core. Additionally, the in vivo results highlighted a significant boosted efficacy of PRZ-PMMs manifested by fecal eggs output and worm burden reduction, which was clearly evident at the lesser PRZ dose, besides a reversed effect for the intestinal histological disruptions. At 50 µg/mL, PRZ-PMMs increased the percent of non-viable eggs to 100% versus 47% for crude PRZ, whilst shell destruction and loss of embryo were only clear with the applied nano-cargo. Moreover, superior bioavailability by 3.43-fold with elongated residence time was measured for PRZ-PMMs compared to PRZ suspension. Practically, our results unravel the potential of PRZ-PMMs as an oral promising tolerable lower dose nanoplatform for more competent PRZ mass chemotherapy
Greenness assessment of chromatographic methods used for analysis of empagliflozin: a comparative study
The analytical chemistry community is attempting to incorporate green chemistry concepts in the development of analytical techniques to redefine analytical methods and dramatically modify the philosophy of analytical technique development. Each greenness assessment method has its own benefits and drawbacks, as well as its own procedures. The results of each greenness assessment method produce numerous deductions regarding the selection of a greenest chromatographic method on which the determination of a greenness assessment tool depends. The current study examined the greenness behavior of 26 reported chromatographic methods in the literature for the evaluation of the medicine empagliflozin using three evaluation methods: the national environmental methods index (NEMI), the eco-scale assessment (ESA), and the green analytical procedure index (GAPI). This comparative study discussed the value of using more than one greenness evaluation methods while evaluating. The findings showed that the NEMI was a less informative and misleading tool. However, the ESA provided reliable numerical assessments out of 100. Despite the GAPI being a complex assessment compared to the others, it provided a fully descriptive three-colored pictogram and a precise assessment. The findings recommended applying more than one greenness assessment tool to evaluate the greenness of methods prior to planning laboratory-based analytical methods to ensure an environment friendly process