4 research outputs found

    Reversal of morphine tolerance by a compound with NPFF receptor subtype-selective actions

    Get PDF
    AbstractNeuropeptide FF (NPFF) modulates opiate actions. It has pro-nociceptive effects, primarily through the NPFF receptor 1 subtype, and anti-nociceptive effects, primarily through the NPFFR2 subtype. AC-263093 is a small l, organic, systemically active molecule that was previously shown to functionally activate NPFFR2, but not NPFFR1. It was hypothesized that AC-263093 would attenuate morphine tolerance. Rats were tested for radiant heat tail-flick latency before and after 5mg/kg morphine sulfate s.c. They were then rendered morphine-tolerant by continuous subcutaneous infusion of 17.52mg/kg/day morphine sulfate. On the seventh day of infusion, they were retested for analgesia 10 and 20min after 5mg/kg morphine sulfate s.c. Tolerance was indicated by reduction of morphine analgesia from the pre-infusion test. Fifty minutes prior to morphine challenge, rats received either 10mg/kg i.p. AC-263093 or injection vehicle alone. AC-2623093-treated rats had far smaller tolerance scores than control rats. This drug effect was significant, p=0.015. The same dose of AC-263093 had almost no analgesic effect in non-tolerant, saline-infused rats. In vitro experiments revealed that AC-263093 had equal affinity for NPFFR1 and NPFFR2, and functionally inactivated NPFFR1, in addition to its previously shown ability to activate NPFFR2. Thus, altering the balance between activation of NPFF receptor subtypes may provide one approach to reversing opiate tolerance

    Opicapone, a Novel Catechol-O-methyl Transferase Inhibitor, for Treatment of Parkinson\u27s Disease Off Episodes

    Get PDF
    Parkinson\u27s Disease (PD) is a common neurodegenerative disorder and the leading cause of disability. It causes significant morbidity and disability through a plethora of symptoms, including movement disorders, sleep disturbances, and cognitive and psychiatric symptoms. The traditional pathogenesis theory of PD involves the loss of dopaminergic neurons in the substantia nigra (SN). Classically, treatment is pursued with an assortment of medications that are directed at overcoming this deficiency with levodopa being central to most treatment plans. Patients taking levodopa tend to experience off episodes with decreasing medication levels, causing large fluctuations in their symptoms. These off episodes are disturbing and a source of morbidity for these patients. Opicapone is a novel, peripherally acting Catechol-O-methyl transferase (COMT) inhibitor that is used as adjunctive therapy to carbidopa/levodopa for treatment and prevention of off episodes. It has been approved for use as an adjunct to levodopa since 2016 in Europe and has recently (April 2020) gained FDA approval for use in the USA. By inhibiting COMT, opicapone slows levodopa metabolism and increases its availability. Several clinical studies demonstrated significant improvement in treatment efficacy and reduction in duration of off episodes. The main side effect demonstrated was dyskinesia, mostly with the 100mg dose, which is higher than the approved, effective dose of 50mg. Post-marketing surveillance and analysis are required to further elucidate its safety profile and contribute to patient selection. This paper reviews the seminal and latest evidence in the treatment of PD off episodes with the novel drug Opicapone, including efficacy, safety, and clinical indications

    Opicapone for the Treatment of Parkinson\u27s Disease Off Episodes: Pharmacology and Clinical Considerations

    No full text
    Parkinson\u27s disease (PD) is a common neurodegenerative disorder. It is also the fastest-growing neurodegenerative disorder and has more than doubled between 1990 and 2016. Parkinson\u27s disease causes significant morbidity and disability from motor dysfunction, sleep disturbances, and cognitive and psychiatric symptoms. This paper reviews recent evidence in the treatment of PD off episodes with the novel drug opicapone, including its efficacy, safety, and clinical indications. Opicapone is a novel, peripherally acting catechol-O-methyl transferase (COMT) inhibitor used as adjunctive therapy to carbidopa/levodopa for treatment and prevention of off episodes. It has been approved for use as an adjunct to levodopa since 2016 in Europe and has recently (April 2020) gained FDA approval for use in the USA. By inhibiting COMT, opicapone slows levodopa metabolism and increases its availability. Several clinical studies demonstrated significant improvement in treatment efficacy and reduction in the duration of off episodes The main side effect demonstrated was dyskinesia, mostly with the 100 mg dose, which is higher than the approved, effective dose of 50 mg

    Opicapone, a Novel Catechol-O-methyl Transferase Inhibitor, for Treatment of Parkinson\u27s Disease Off Episodes

    Get PDF
    Parkinson\u27s Disease (PD) is a common neurodegenerative disorder and the leading cause of disability. It causes significant morbidity and disability through a plethora of symptoms, including movement disorders, sleep disturbances, and cognitive and psychiatric symptoms. The traditional pathogenesis theory of PD involves the loss of dopaminergic neurons in the substantia nigra (SN). Classically, treatment is pursued with an assortment of medications that are directed at overcoming this deficiency with levodopa being central to most treatment plans. Patients taking levodopa tend to experience off episodes with decreasing medication levels, causing large fluctuations in their symptoms. These off episodes are disturbing and a source of morbidity for these patients. Opicapone is a novel, peripherally acting Catechol-O-methyl transferase (COMT) inhibitor that is used as adjunctive therapy to carbidopa/levodopa for treatment and prevention of off episodes. It has been approved for use as an adjunct to levodopa since 2016 in Europe and has recently (April 2020) gained FDA approval for use in the USA. By inhibiting COMT, opicapone slows levodopa metabolism and increases its availability. Several clinical studies demonstrated significant improvement in treatment efficacy and reduction in duration of off episodes. The main side effect demonstrated was dyskinesia, mostly with the 100mg dose, which is higher than the approved, effective dose of 50mg. Post-marketing surveillance and analysis are required to further elucidate its safety profile and contribute to patient selection. This paper reviews the seminal and latest evidence in the treatment of PD off episodes with the novel drug Opicapone, including efficacy, safety, and clinical indications
    corecore