115 research outputs found

    Sleeping Beauty transposon vectors for therapeutic applications: advances and challenges

    Get PDF
    Transposable elements are natural, non-viral gene delivery vehicles capable of mediating stable genomic integration. The Sleeping Beauty (SB) transposon has the ability to cut-and-paste the 'gene of interest' into the genome, providing the basis for long-term, permanent transgene expression in transgenic cells and organisms. The SB transposon system is relatively well characterized, and has been extensively engineered for efficient gene delivery and gene discovery purposes in a wide range of vertebrates, including humans. The SB system is a safe and simple-to-use vector that enables cost-effective, rapid preparation of therapeutic doses of cell products. Recently, there has been a growing interest in using the SB system for therapy as evidenced by the large number of pre-clinical studies. SB moved swiftly from pre-clinical to clinical trials in almost a decade. In this article, we highlight the advancements and challenges associated with the SB system in various therapeutic applications. We also provide an overview that has been exploited by spin-off companies based on the SB system

    Sleeping Beauty transposition: from biology to applications

    Get PDF
    Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications

    Wide awake and ready to move: 20 years of non-viral therapeutic genome engineering with the Sleeping Beauty transposon system

    Get PDF
    Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted

    Regulation of DNA transposition by CpG methylation and chromatin structure in human cells

    Get PDF
    BACKGROUND: The activity of transposable elements can be regulated by different means. DNA CpG methylation is known to decrease or inhibit transpositional activity of diverse transposons. However, very surprisingly, it was previously shown that CpG methylation of the Sleeping Beauty (SB) transposon significantly enhanced transposition in mouse embryonic stem cells. RESULTS: In order to investigate the unexpected response of SB transposition to CpG methylation, related transposons from the Tc1/mariner superfamily, that is, Tc1, Himar1, Hsmar1, Frog Prince (FP) and Minos were tested to see how transposition was affected by CpG methylation. A significant increase of >20-fold in transposition of SB, FP and Minos was seen, whereas Tc1, Himar1 and Hsmar1 showed no difference in transposition upon CpG-methylation. The terminal inverted repeats (TIRs) of the SB, FP and Minos elements share a common structure, in which each TIR contains two functionally important binding sites for the transposase (termed the IR/DR structure). The group of IR/DR elements showed increased excision after CpG methylation compared to untreated transposon donor plasmids. We found that de novo CpG methylation is not required for transposition. A mutated FP donor plasmid with depleted CpG sites in both TIRs was as efficient in transposition as the wild-type transposon, indicating that CpG sites inside the TIRs are not responsible for altered binding of the factors potentially modulating transposition. By using an in vivo one-hybrid DNA-binding assay in cultured human cells we found that CpG methylation had no appreciable effect on the affinity of SB transposase to its binding sites. However, chromatin immunoprecipitation indicated that CpG-methylated transposon donor plasmids are associated with a condensed chromatin structure characterized by trimethylated histone H3K9. Finally, DNA compaction by protamine was found to enhance SB transposition. CONCLUSIONS: We have shown that DNA CpG methylation upregulates transposition of IR/DR elements in the Tc1/mariner superfamily. CpG methylation provokes the formation of a tight chromatin structure at the transposon DNA, likely aiding the formation of a catalytically active complex by facilitating synapsis of sites bound by the transposase

    How to tame an endogenous retrovirus: HERVH and the evolution of human pluripotency

    Get PDF
    HERVH is one of the most successful endogenous retrovirus in the human genome. Relative to other endogenous retroviruses, slower degradation of HERVH internal sequences indicates their potential relevance for the host. HERVH is transcriptionally active during human preimplantation embryogenesis. In this review, we focus on the role of HERVH in regulating human pluripotency. The HERVH-mediated pluripotency network has been evolved recently in primates. Nevertheless, it became an essential feature of human pluripotency. We discuss how HERVH modulates the human pluripotency network by providing alternative transcription factor binding sites, functioning as a long-range enhancer, and as being a major source for pluripotency specific long non-coding RNAs and chimeric transcripts

    Pluripotency and the endogenous retrovirus HERVH: Conflict or serendipity?

    Get PDF
    Remnants of ancient retroviral infections during evolution litter all mammalian genomes. In modern humans, such endogenous retroviral (ERV) sequences comprise at least 8% of the genome. While ERVs and other types of transposable elements undoubtedly contribute to the genomic "junk yard", functions for some ERV sequences have been demonstrated, with growing evidence that ERVs can be important players in gene regulatory processes. Here we focus on one particular large family of human ERVs, termed HERVH, which several recent studies suggest has a key regulatory role in human pluripotent stem cells. Remarkably, this is not the first instance of an ERV controlling pluripotency. We speculate as to why this convergent evolution might have come about, suggesting that it may reflect selection on the virus to extend the time available for transposition. Alternatively it may reflect serendipity alone

    Full-length dysferlin transfer by the hyperactive Sleeping Beauty transposase restores dysferlin-deficient muscle

    Get PDF
    Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB) transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers) of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6.Cg-Dysf(prmd) Prkdc(scid)/J (Scid/BLA/J) mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy

    Retrotransposon: a versatile player in human preimplantation development and health

    Get PDF

    Staring at the onco-exaptation: the two-faced medley of an ancient retrovirus, HERVH

    Get PDF
    Cell senescence suppresses tumors by arresting cells at risk of becoming malignant. However, this process in turn can affect the microenvironment, leading to acquisition of a senescence-associated secretory phenotype (SASP) that renders senescent cells proinflammatory and results in tumor progression. But how is SASP controlled? In this issue of the JCI, Attig and Pape et al. describe the role of chimeric calbindin 1 (CALB1) transcripts, which are driven by an upstream human endogenous retrovirus subfamily H (HERVH) element. The authors propose that in lung squamous cell carcinoma (LUSC), HERVH-driven isoforms of calbindin (HERVH-CALB1) counteract SASP. As an alternative promoter, HERVH drove calbindin isoforms that prevented cancer cell senescence and associated inflammation, which was associated with better patient survival. We comment on the similarities between HERVH-CALB1-related cellular fitness in cancer and early embryogenesis and discuss the potential benefits of HERVH-driven chimeric transcripts

    Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition

    Get PDF
    The functional relevance of the inverted repeat structure (IR/DR) in a subgroup of the Tc1/mariner superfamily of transposons has been enigmatic. In contrast to mariner transposition, where a topological filter suppresses single-ended reactions, the IR/DR orchestrates a regulatory mechanism to enforce synapsis of the transposon ends before cleavage by the transposase occurs. This ordered assembly process shepherds primary transposase binding to the inner 12DRs (where cleavage does not occur), followed by capture of the 12DR of the other transposon end. This extra layer of regulation suppresses aberrant, potentially genotoxic recombination activities, and the mobilization of internally deleted copies in the IR/DR subgroup, including Sleeping Beauty (SB). In contrast, internally deleted sequences (MITEs) are preferred substrates of mariner transposition, and this process is associated with the emergence of Hsmar1-derived miRNA genes in the human genome. Translating IR/DR regulation to in vitro evolution yielded an SB transposon version with optimized substrate recognition (pT4). The ends of SB transposons excised by a K248A excision(+)/integration(-) transposase variant are processed by hairpin resolution, representing a link between phylogenetically, and mechanistically different recombination reactions, such as V(D)J recombination and transposition. Such variants generated by random mutation might stabilize transposon-host interactions or prepare the transposon for a horizontal transfer
    corecore