39 research outputs found
A visualization of the damage in Lead Tungstate calorimeter crystals after exposure to high-energy hadrons
The anticipated performance of calorimeter crystals in the environment
expected after the planned High-Luminosity upgrade of the Large Hadron Collider
(HL-LHC) at CERN has to be well understood, before informed decisions can be
made on the need for detector upgrades. Throughout the years of running at the
HL-LHC, the detectors will be exposed to considerable fluences of fast hadrons,
that have been shown to cause cumulative transparency losses in Lead Tungstate
scintillating crystals. In this study, we present direct evidence of the main
underlying damage mechanism. Results are shown from a test that yields a direct
insight into the nature of the hadron-specific damage in Lead Tungstate
calorimeter crystals exposed to 24 GeV/c protons.Comment: 8 pages, 6 figure
High Power RF Induced Thermal Fatigue in the High Gradient CLIC Accelerating Structures
The need for high accelerating gradients for the CLIC (Compact Linear Collider) imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF (Radio Frequency) currents are subjected to cyclic thermal stresses possibly resulting in surface break up by fatigue. Various high strength alloys from the group of high conductivity copper alloys have been selected and have been tested in different states, with different surface treatments and in different stress ratios. Low to medium cycle fatigue data (up to 108 cycles) of fully compressive surface thermal stresses has been collected by means of a pulsed laser surface heating apparatus. The surface damage has been characterized by SEM observations and roughness measurements. High cycle fatigue data, up to 7x1010 cycles, of varying stress ratio has been collected in high frequency bulk fatigue tests using an ultrasonic apparatus. Up-to-date results from these experiments are presented
Material Selection and Characterization for High Gradient RF Applications
The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained with both techniques should be improved. Testing in DC and radiofrequency (RF) is continued in order to select materials for a bi-metal exhibiting superior properties with respect to the combination C15000-Mo
Effects of thermal shocks on the release of radioisotopes and on molten metal target vessels
The ISOLDE pulsed proton beam peak power amounts to 500 MW during the 2.4 ms proton pulse. The fraction of the proton pulse energy deposited in the target material is at the origin of severe thermal shocks. Quantitative measurement of their effect on the release of radioelements from ISOLDE targets was obtained by comparison of release profiles measured under different proton beam settings. The thermal shock induced in liquids (Pb, Sn, La) lead to mechanical failure of ISOLDE molten metal target vessels. Failure analysis is presented and discussed in the light of the response of mercury samples submitted to the ISOLDE beam and monitored by high-speed optical systems
Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1
Altres ajuts: JM-P and NI-U are supported by the Spanish Secretariat of State of Research, Development and Innovation through grant SAF2016-80033-R. MG is supported by a Marie Curie Career Integration Grant (CIG) from the European Commission and by the Pla estratègic de recerca i innovació en salut (PERIS), from the Catalan government.Antigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies
Clinical Application of Low-dose Calcium Regulating Neural Inhibitor in Related Renal Transplantation
摘要 目的探讨低剂量钙调节神经素抑制剂在亲属活体肾脏移植中的安全性与效果。 方法回顾性总结厦门大学附属东南医院亲属活体肾脏移植患者122例:其中除4例为夫妻间供肾移植外其余均为血缘亲属关系供肾。人类白细胞抗原(HLA)全配7例,1个抗原错配20例,2个抗原错配23例,3个抗原错配72例。血型相同者91例,相容者31例。122例供者均经开放式手术取肾,供者取左肾105例,取右肾17例。术后均采用环孢素A(CsA)或他克莫司(TAC)、霉酚酸酯(MMF)及皮质激素(Pred)经典三联免疫抑制剂方案治疗,其中环孢素A方案71例,他克莫司方案51例。根据术后免疫抑制方案中钙调节免疫抑制剂(CNIs...Abstract Aim: Discusses the safety and effection of low-dose calcineurin inhibitors (CNIs) used in living relative donor kidney transplantation. Methods: One hundred and twenty-two patients with living relative donor kidney transplantation in Southeast Hospital Affiliated to Xiamen University were enrolled in this retrospective study. Expect for 4 patients donated by their spouses, the others h...学位:医学硕士院系专业:医学院临床医学系_外科学学号:2452009115299
Long Term Stability of the LHC Superconducting Cryodipoles after Outdoor Storage
The main superconducting dipoles for the LHC are being stored outdoors for periods from a few weeks to several years after conditioning with dry nitrogen gas. Such a storage before installation in the 27 km circumference tunnel may affect not only the mechanical and cryogenic functionality of the cryodipoles but also their quench and field performance. A dedicated task force was established to study all aspects of long term behaviour of the stored cryodipoles, with particular emphasis on electrical and vacuum integrity, quench training behaviour, magnetic field quality, performance of the thermal insulation, mechanical stability of magnet shape and of the interface between cold mass and cryostat, degradation ofmaterials and welds. In particular, one specifically selected cryodipole stored outdoors for more than one year, was retested at cold. In addition, various tests have been carried out on the cryodipole assembly and on the most critical subcomponents to study aspects such as the hygrothermal behaviour of the supporting system and the possible oxidation of the Multi Layer Insulation reflective films. This paper summarizes the main investigations carried out and their results
Challenges and Lessons Learned from fabrication, testing and analysis of eight MQXFA Low Beta Quadrupole magnets for HL-LHC
By the end of October 2022, the US HL-LHC Accelerator Upgrade Project (AUP)
had completed fabrication of ten MQXFA magnets and tested eight of them. The
MQXFA magnets are the low beta quadrupole magnets to be used in the Q1 and Q3
Inner Triplet elements of the High Luminosity LHC. This AUP effort is shared by
BNL, Fermilab, and LBNL, with strand verification tests at NHMFL. An important
step of the AUP QA plan is the testing of MQXFA magnets in a vertical cryostat
at BNL. The acceptance criteria that could be tested at BNL were all met by the
first four production magnets (MQXFA03-MQXFA06). Subsequently, two magnets
(MQXFA07 and MQXFA08) did not meet some criteria and were disassembled. Lessons
learned during the disassembly of MQXFA07 caused a revision to the assembly
specifications that were used for MQXFA10 and subsequent magnets. In this
paper, we present a summary of: 1) the fabrication and test data of all the
MQXFA magnets; 2) the analysis of MQXFA07/A08 test results with
characterization of the limiting mechanism; 3) the outcome of the
investigation, including the lessons learned during MQXFA07 disassembly; and 4)
the finite element analysis correlating observations with test performance
Microchannel cooling for the LHCb VELO Upgrade I
The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC
Run 3, uses silicon microchannel coolers with internally circulating bi-phase
\cotwo for thermal control of hybrid pixel modules operating in vacuum. This is
the largest scale application of this technology to date. Production of the
microchannel coolers was completed in July 2019 and the assembly into cooling
structures was completed in September 2021. This paper describes the R\&D path
supporting the microchannel production and assembly and the motivation for the
design choices. The microchannel coolers have excellent thermal peformance, low
and uniform mass, no thermal expansion mismatch with the ASICs and are
radiation hard. The fluidic and thermal performance is presented.Comment: 31 pages, 27 figure