124 research outputs found

    Energy transfer processes in Er-doped SiO2 sensitized with Si nanocrystals

    Full text link
    We present a high-resolution photoluminescence study of Er-doped SiO2 sensitized with Si nanocrystals (Si NCs). Emission bands originating from recombination of excitons confined in Si NCs and of internal transitions within the 4f-electron core of Er3+ ions, and a band centered at lambda = 1200nm have been identified. Their kinetics have been investigated in detail. Based on these measurements, we present a comprehensive model for energy transfer mechanisms responsible for light generation in this system. A unique picture of energy flow between subsystems of Er3+ and Si NCs is developed, yielding truly microscopic information on the sensitization effect and its limitations. In particular, we show that most of the Er3+ ions available in the system are participating in the energy exchange. The long standing problem of apparent loss of optical activity of majority of Er dopants upon sensitization with Si NCs is clarified and assigned to appearance of a very efficient energy exchange mechanism between Si NCs and Er3+ ions. Application potential of SiO2:Er sensitized by Si NCs is discussed in view of the newly acquired microscopic insight.Comment: 30 pages 13 figure

    From Single-Molecule Interactions to Population-Level Dynamics: Understanding the Complex Organization of RNA Pol II in the Nucleus of Living Cells

    Get PDF
    Transcription involves a complex exchange within a reservoir of proteins in the nucleoplasm, and the specific recruitment of individual proteins at specific gene loci. However, understanding the spatial distribution of individual proteins and the temporal behavior in the nucleus of living cells remains challenging. Using 3D super-resolution fluorescence microscopy and cluster analysis, we observe that the distribution of RNA Polymerase II (Pol II) cluster sizes, measured as the number of polymerases per cluster, follows a −3/2 power law. Radial dependent analysis of the spatial distribution of Pol II also shows scale-invariance, consistent with a so-called self-organized criticality in a fractal geometry of dimension ∌2.7. These results suggest a diffusion-based mechanism whereby, via transient interactions, massive recruitment and dismissal of pol II molecules can occur at specific loci in the nucleoplasm. Kinetic measurements using single-molecule detection in live cells reveal Pol II binding dynamics within minutes. Serum-induced transcription increased Pol II binding kinetics in live cells by an order of magnitude. Together, these results provide a comprehensive view of the spatio-temporal organization of Pol II in the nucleus: from the global population distribution, to single molecule recruitment at specific loci in live cells. This comprehensive single-cell approach can be adopted for other proteins beside RNA Pol II, for real-time quantification of protein organization in vivo, with single-molecule sensitivity

    Nuclear target search at the single molecule level: protein interactions define the exploration landscape

    Get PDF
    Gene regulation relies on highly mobile transcription factors (TFs) exploring the nucleoplasm in search of their targets. Our view of the nucleus has evolved from that of an isotropic and homogenous reactor to that of a highly organized yet very dynamic organelle. However important questions remain on how these regulatory factors explore the nuclear environment in search of their DNA or protein targets, and how their exploration strategy affects the kinetics of transcriptional regulation. We implemented a single-molecule tracking assay to determine the TFs dynamics using photoactivatable tags in human cells. We investigated the mobility of several nuclear proteins, including the transcription factor c-Myc and the elongation factor P-TEFb. We found that, while their diffusion speed was comparable, these proteins largely differed in terms of their exploration geometry. We discovered that c-Myc is a global explorer diffusing in the nucleus without spatial constraints. In contrast, the positive transcription elongation factor P-TEFb is a local explorer that oversamples its environment, constrained by a fractal nuclear architecture. Consequently, each c-Myc molecule is equally available for all nuclear sites while P-TEFb reaches its targets in a position-dependent manner. We also measured the mobility of a P-TEFb mutant in which the interaction with the CTD of the RNA Pol II was truncated. In this case, the single-molecule experiments suggested a global exploration of the P-TEFb mutant, consistent with free diffusion. Our observations are in line with a model in which the exploration geometry of TFs is constrained by their interactions and not by exclusion properties. Our findings have strong implications on how proteins react in the nucleus and how their function can be regulated in space and time

    Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells

    Get PDF
    Transcription is reported to be spatially compartmentalized in nuclear transcription factories with clusters of RNA polymerase II (Pol II). However, little is known about when these foci assemble or their relative stability. We developed a quantitative single-cell approach to characterize protein spatiotemporal organization, with single-molecule sensitivity in live eukaryotic cells. We observed that Pol II clusters form transiently, with an average lifetime of 5.1 (± 0.4) seconds, which refutes the notion that they are statically assembled substructures. Stimuli affecting transcription yielded orders-of-magnitude changes in the dynamics of Pol II clusters, which implies that clustering is regulated and plays a role in the cell’s ability to effect rapid response to external signals. Our results suggest that transient crowding of enzymes may aid in rate-limiting steps of gene regulation

    Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus

    Get PDF
    Gene regulation relies on transcription factors (TFs) exploring the nucleus searching their targets. So far, most studies have focused on how fast TFs diffuse, underestimating the role of nuclear architecture. We implemented a single-molecule tracking assay to determine TFs dynamics. We found that c-Myc is a global explorer of the nucleus. In contrast, the positive transcription elongation factor P-TEFb is a local explorer that oversamples its environment. Consequently, each c-Myc molecule is equally available for all nuclear sites while P-TEFb reaches its targets in a position-dependent manner. Our observations are consistent with a model in which the exploration geometry of TFs is restrained by their interactions with nuclear structures and not by exclusion. The geometry-controlled kinetics of TFs target-search illustrates the influence of nuclear architecture on gene regulation, and has strong implications on how proteins react in the nucleus and how their function can be regulated in space and time

    3D‐Architected Alkaline‐Earth Perovskites

    Get PDF
    3D ceramic architectures are captivating geometrical features with an immense demand in optics. In this work, an additive manufacturing (AM) approach for printing alkaline-earth perovskite 3D microarchitectures is developed. The approach enables custom-made photoresists suited for two-photon lithography, permitting the production of alkaline-earth perovskite (BaZrO 3, CaZrO 3, and SrZrO 3) 3D structures shaped in the form of octet-truss lattices, gyroids, or inspired architectures like sodalite zeolite, and C 60 buckyballs with micrometric and nanometric feature sizes. Alkaline-earth perovskite morphological, structural, and chemical characteristics are studied. The optical properties of such perovskite architectures are investigated using cathodoluminescence and wide-field photoluminescence emission to estimate the lifetime rate and defects in BaZrO 3, CaZrO 3, and SrZrO 3. From a broad perspective, this AM methodology facilitates the production of 3D-structured mixed oxides. These findings are the first steps toward dimensionally refined high-refractive-index ceramics for micro-optics and other terrains like (photo/electro)catalysis.</p
    • 

    corecore