5 research outputs found

    Biological Control of Aspergillus flavus by the Yeast Aureobasidium pullulans In Vitro and on Tomato Fruit

    No full text
    Aspergillus flavus is an important pathogenic fungus affecting many crops and is one of the main sources of their aflatoxin contamination. The primary method of limiting this pathogen is using chemical fungicides, but researchers focus on searching for other effective agents for its control due to many disadvantages and limitations of these agrochemicals. The results obtained in the present study indicate the high potential of two yeast strains, Aureobasidium pullulans PP4 and A. pullulans ZD1, in the biological control of A. flavus. Under in vitro conditions, mycelial growth was reduced by 53.61% and 63.05%, and spore germination was inhibited by 68.97% and 79.66% by ZD1 and PP4 strains, respectively. Both strains produced the lytic enzymes chitinase and β-1,3-glucanase after 5 days of cultivation with cell wall preparations (CWP) of A. flavus in the medium as a carbon source. In addition, the tested yeasts showed the ability to grow over a wide range of temperatures (4–30 °C), pH (4–11), and salinity (0–12%) and showed tolerance to fungicides at concentrations corresponding to field conditions. Both isolates tested were highly tolerant to cupric oxychloride, showing biomass gains of 85.84% (ZD1) and 87.25% (PP4). Biomass growth in the presence of fungicides azoxystrobin was 78.71% (ZD1) and 82.65% (PP4), while in the presence of difenoconazole, it was 70.09% (ZD1) and 75.25% (PP4). The yeast strains were also tested for antagonistic effects against A. flavus directly on tomato fruit. Both isolates acted effectively by reducing lesion diameter from 29.13 mm (control) to 8.04 mm (PP4) and 8.83 mm (ZD1)

    Biological Control of <i>Aspergillus flavus</i> by the Yeast <i>Aureobasidium pullulans</i> In Vitro and on Tomato Fruit

    No full text
    Aspergillus flavus is an important pathogenic fungus affecting many crops and is one of the main sources of their aflatoxin contamination. The primary method of limiting this pathogen is using chemical fungicides, but researchers focus on searching for other effective agents for its control due to many disadvantages and limitations of these agrochemicals. The results obtained in the present study indicate the high potential of two yeast strains, Aureobasidium pullulans PP4 and A. pullulans ZD1, in the biological control of A. flavus. Under in vitro conditions, mycelial growth was reduced by 53.61% and 63.05%, and spore germination was inhibited by 68.97% and 79.66% by ZD1 and PP4 strains, respectively. Both strains produced the lytic enzymes chitinase and β-1,3-glucanase after 5 days of cultivation with cell wall preparations (CWP) of A. flavus in the medium as a carbon source. In addition, the tested yeasts showed the ability to grow over a wide range of temperatures (4–30 °C), pH (4–11), and salinity (0–12%) and showed tolerance to fungicides at concentrations corresponding to field conditions. Both isolates tested were highly tolerant to cupric oxychloride, showing biomass gains of 85.84% (ZD1) and 87.25% (PP4). Biomass growth in the presence of fungicides azoxystrobin was 78.71% (ZD1) and 82.65% (PP4), while in the presence of difenoconazole, it was 70.09% (ZD1) and 75.25% (PP4). The yeast strains were also tested for antagonistic effects against A. flavus directly on tomato fruit. Both isolates acted effectively by reducing lesion diameter from 29.13 mm (control) to 8.04 mm (PP4) and 8.83 mm (ZD1)

    Assessment of the Fungistatic Properties of <i>Calendula officinalis</i> L. Water Extract and the Effect of Its Addition on the Quality of Wheat Bread

    No full text
    The potential of Calendula officinalis water extract against fungi Aspergillus niger and Penicillium sp. and the effect of extract addition on the quality of wheat bread were investigated. In vitro, the extract reduced the mycelial growth and biomass production of A. niger, but there was no inhibitory effect on Penicillium sp. Enriched bread showed significantly higher total phenolic content, by about 77% and 95% in the bread, in which 10% and 15% of the water was replaced with extract, respectively. The antioxidant potential against DPPH• was significantly higher (compared to the control) in both variants used in the experiment, and the level of antioxidant activity increased with the addition of extract. The enriched bread had good quality characteristics—lower baking losses and higher volume than the control. The moisture content and acidity of the crumb of the extract-enriched bread were also higher. The extract additive used did not affect the sensory properties of the bread

    Reduction of the Fusarium Mycotoxins: Deoxynivalenol, Nivalenol and Zearalenone by Selected Non-Conventional Yeast Strains in Wheat Grains and Bread

    No full text
    Mycotoxins, toxic secondary metabolites produced by fungi, are important contaminants in food and agricultural industries around the world. These toxins have a multidirectional toxic effect on living organisms, causing damage to the kidneys and liver, and disrupting the functions of the digestive tract and the immune system. In recent years, much attention has been paid to the biological control of pathogens and the mycotoxins they produce. In this study, selected yeasts were used to reduce the occurrence of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) produced by Fusarium culmorum, F. graminearum, and F. poae on wheat grain and bread. In a laboratory experiment, an effective reduction in the content of DON, NIV, and ZEA was observed in bread prepared by baking with the addition of an inoculum of the test yeast, ranging from 16.4% to 33.4%, 18.5% to 36.2% and 14.3% to 35.4%, respectively. These results indicate that the selected yeast isolates can be used in practice as efficient mycotoxin decontamination agents in the food industry

    Biological Control of Fusarium culmorum, Fusarium graminearum and Fusarium poae by Antagonistic Yeasts

    No full text
    The genus Fusarium is considered to be one of the most pathogenic, phytotoxic and toxin-producing group of microorganisms in the world. Plants infected by these fungi are characterized by a reduced consumer and commercial value, mainly due to the contamination of crops with mycotoxins. Therefore, effective methods of reducing fungi of the genus Fusarium must be implemented already in the field before harvesting, especially with alternative methods to pesticides such as biocontrol. In this study we identified yeasts that inhibit the growth of the pathogenic fungi Fusarium culmorum, F. graminearum and F. poae. Tested yeasts came from different culture collections, or were obtained from organic and conventional cereals. The greater number of yeast isolates from organic cereals showed antagonistic activity against fungi of the genus Fusarium compared to isolates from the conventional cultivation system. Cryptococcus carnescens (E22) isolated from organic wheat was the only isolate that limited the mycelial growth of all three tested fungi and was the best antagonist against F. poae. Selected yeasts showed various mechanisms of action against fungi, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores or production of extracellular lytic enzymes: chitinase and &beta;-1,3-glucanase. Of all the investigated mechanisms of yeast antagonism against Fusarium, competition for nutrients and the ability to inhibit spore germination prevailed
    corecore