13 research outputs found

    Bio-Waste as a Substitute for the Production of Carbon Dioxide Adsorbents: A Review

    No full text
    Bioadsorbent, obtained as a result of the processing of bio-waste, has recently gained popularity as a material that adsorbs greenhouse gases, mainly carbon dioxide. Bio-waste, mainly residues from food industry operations, is a waste to be landfilled or composted and can be a potential substrate for bioadsorbent production. Bioadsorbents used for carbon capture must, above all, have low production costs and high adsorption efficiency. This review covers popular bioadsorbents that have been tested for their ability to adsorb carbon dioxide. The paper compares bioadsorbent production methods, physicochemical properties, adsorption isotherms, surfaces, and their porosity. There is a lack of data in the literature on the topic of carbon dioxide adsorption on large-scale plants in the target environment. Therefore, further research needs to fill in the gaps to identify the promised potential of these bioadsorbents

    Parametric Study towards Optimization of a Short Duration Carbonation Process of Recycled Cement Paste

    No full text
    The recycling process of concrete originates a byproduct, cement paste powder (CPP), which is a material composed mainly of hydrated cement. This cementitious material has demonstrated promising results when applied as a binder in new concrete batches, provided it has been subjected to a previous carbonation process. One of the obstacles to the industrial application of this strategy is the long duration of the typical carbonation process, which requires from 3 to 28 days. Recently, the authors have developed a short two-hour carbonation process and thoroughly analysed it over its entire extension. In this paper, a parametric analysis of the carbonation process is performed towards CO2 uptake maximization, aiming to increase the feasibility of its short duration. CO2 uptake is evaluated using the ignition by furnace method and thermogravimetric analysis. Among the parameters considered, the initial water content and the CPP thickness present the highest impact on CO2 uptake. The investigation of different CO2 concentrations inside the carbonation chamber showed that the maximum CO2 uptake does not occur for the highest concentration value. Moreover, a minimum resident time for the forced carbonation of CPP in industrial contexts is presented, and is found to be highly dependent on the CO2 concentration. The particle size and purity degree of CPP revealed a limited influence on the CO2 uptake achieved. Additionally, this paper provides further insight into the mechanisms involved in the carbonation of mature cement paste while increasing the feasibility of our recently proposed short duration carbonation process

    The Environmental Impacts of Carbon Capture Utilization and Storage on the Electricity Sector: A Life Cycle Assessment Comparison between Italy and Poland

    No full text
    Carbon Capture Utilization and Storage (CCUS) is a set of technologies aimed at capturing carbon dioxide (CO2) emissions from point-source emitters to either store permanently or use as a feedstock to produce chemicals and fuels. In this paper, the potential benefits of CCUS integration into the energy supply sector are evaluated from a Life Cycle Assessment (LCA) perspective by comparing two different routes for the CO2 captured from a natural gas combined cycle (NGCC). Both the complete storage of the captured CO2 and its partial utilization to produce dimethyl ether are investigated. Moreover, the assessment is performed considering the region-specific features of two of the largest CO2 emitters in Europe, namely Italy and Poland. Results shows that the complete storage of the captured CO2 reduces Global Warming Potential (GWP) by ~89% in Italy and ~97%, in Poland. On the other hand, the partial utilization of CO2 to produce dimethyl ether leads to a decrease of ~58% in Italy and ~68% in Poland with respect to a comparable reference entailing conventional dimethyl ether production. A series of environmental trade-offs was determined, with all the investigated categories apart from GWP showing an increase, mainly connected with the higher energy requirements of CCUS processes. These outcomes highlight the need for a holistic-oriented approach in the design of novel implemented configurations to avoid burden shifts throughout the value chain

    The Environmental Impacts of Carbon Capture Utilization and Storage on the Electricity Sector: A Life Cycle Assessment Comparison between Italy and Poland

    No full text
    Carbon Capture Utilization and Storage (CCUS) is a set of technologies aimed at capturing carbon dioxide (CO2) emissions from point-source emitters to either store permanently or use as a feedstock to produce chemicals and fuels. In this paper, the potential benefits of CCUS integration into the energy supply sector are evaluated from a Life Cycle Assessment (LCA) perspective by comparing two different routes for the CO2 captured from a natural gas combined cycle (NGCC). Both the complete storage of the captured CO2 and its partial utilization to produce dimethyl ether are investigated. Moreover, the assessment is performed considering the region-specific features of two of the largest CO2 emitters in Europe, namely Italy and Poland. Results shows that the complete storage of the captured CO2 reduces Global Warming Potential (GWP) by ~89% in Italy and ~97%, in Poland. On the other hand, the partial utilization of CO2 to produce dimethyl ether leads to a decrease of ~58% in Italy and ~68% in Poland with respect to a comparable reference entailing conventional dimethyl ether production. A series of environmental trade-offs was determined, with all the investigated categories apart from GWP showing an increase, mainly connected with the higher energy requirements of CCUS processes. These outcomes highlight the need for a holistic-oriented approach in the design of novel implemented configurations to avoid burden shifts throughout the value chain

    Valorisation of Recycled Cement Paste: Feasibility of a Short-Duration Carbonation Process

    No full text
    Cement paste powder (CPP) is a by-product of the recycling process of concrete with an elevated carbonation capability and potential to be recycled as a binding material in new concrete batches. The application of a carbonation treatment to CPP improves this potential even more, besides the evident gains in terms of CO2 net balance. However, the long duration usually adopted in this treatment, from 3 to 28 days, hampers the industrial viability of the process. We studied the feasibility of a short-duration carbonation process, with a duration of two hours, carrying out a comprehensive characterization of the material throughout the process. The test was performed on CPP with an average initial water content of 16.9%, exposed to a CO2 concentration of 80%. The results demonstrate two main carbonation rates: a rapid growth rate in the first 18 minutes of the process, involving all the calcium-bearing compounds in CPP, and a slow growth rate afterwards, where only C-S-H contributes to the carbonation reaction. During the 2 h carbonation process, the main CPP compounds, calcium silicate hydrate (C-S-H) and calcium hydroxide (CH), reached different carbonation degrees, 31% and 94%, with, however, close CO2 uptake values, 8% and 11%, respectively. Nevertheless, the total CO2 uptake for this process (≈19%) attained values not distant from the values usually obtained in a carbonation of 12 days or more (19–25%). Hence, these findings highlight the blocking role of C-S-H in the carbonation process, indicating that longer carbonation periods are only going to be useful if an effective carbonation of this compound is accomplished. In the present scenario, where CH is the main contributor to the reaction, the reduction in the process duration is feasible

    Exergetic Analysis of DME Synthesis from CO<sub>2</sub> and Renewable Hydrogen

    No full text
    Carbon Capture and Utilization (CCU) is a viable solution to valorise the CO2 captured from industrial plants’ flue gas, thus avoiding emitting it and synthesizing products with high added value. On the other hand, using CO2 as a reactant in chemical processes is a challenging task, and a rigorous analysis of the performance is needed to evaluate the real impact of CCU technologies in terms of efficiency and environmental footprint. In this paper, the energetic performance of a DME and methanol synthesis process fed by 25% of the CO2 captured from a natural gas combined cycle (NGCC) power plant and by the green hydrogen produced through an electrolyser was evaluated. The remaining 75% of the CO2 was compressed and stored underground. The process was assessed by means of an exergetic analysis and compared to post-combustion Carbon Capture and Storage (CCS), where 100% of the CO2 captured was stored underground. Through the exergy analysis, the quality degradation of energy was quantified, and the sources of irreversibility were detected. The carbon-emitting source was a 189 MW Brayton–Joule power plant, which was mainly responsible for exergy destruction. The CCU configuration showed a higher exergy efficiency than the CCS, but higher exergy destruction per non-emitted carbon dioxide. In the DME/methanol production plant, the main contribution to exergy destruction was given by the distillation column separating the reactor outlet stream and, in particular, the top-stage condenser was found to be the component with the highest irreversibility (45% of the total). Additionally, the methanol/DME synthesis reactor destroyed a significant amount of exergy (24%). Globally, DME/methanol synthesis from CO2 and green hydrogen is feasible from an exergetic point of view, with 2.276 MJ of energy gained per 1 MJ of exergy destroyed

    Copper and Iron Cooperation on Micro-Spherical Silica during Methanol Synthesis via CO<sub>2</sub> Hydrogenation

    No full text
    A series of mono- and bi-metallic copper and iron samples were prepared by impregnation method on micro-spherical silica and used for the synthesis of methanol via CO2 hydrogenation. Compared with conventional carrier oxides, micro-spherical silica has obvious advantages in terms of absorption capacity and optimal distribution of active phases on its surface, also exhibiting excellent heat resistance properties and chemical stability. The prepared catalysts were characterized by various techniques including XRF, XRD, SEM, TEM, H2-TPR and CO2-TPD techniques, while catalytic measurements in CO2 hydrogenation reaction to methanol were performed in a fixed bed reactor at a reaction pressure of 30 bar and temperature ranging from 200 to 260 °C. The obtained results revealed that the mutual interaction of copper–iron induces promotional effects on the formation of methanol, especially on systems where Fe enrichment on the silica support favours the presence of a larger concentration of oxygen vacancies, consequently responsible for higher CO2 adsorption and selective methanol production. Surface reconstruction phenomena rather than coke or metal sintering were responsible for the slight loss of activity recorded on the catalyst samples during the initial phase of reaction; however, with no appreciable change on the product selectivity
    corecore