3 research outputs found

    Tumor growth activity of duloxetine in Ehrlich carcinoma in mice

    No full text
    Abstract Objective The objective of this study was to analyze whether duloxetine influences tumor growth in Ehrlich carcinoma. The mice were administered 5 or 30 mg/kg of duloxetine or saline solution. All animals were inoculated with tumor cells. The tumor progression was evaluated by body weight, abdominal circumference, ascites volume and tumor cell count. The effect of duloxetine on immune response was evaluated by lymphoid cells, nitric oxide (NO) production, arginase and superoxide dismutase (SOD) activity and the spleen immunophenotyping. Results There was no difference between the groups regarding weight, abdominal circumference, ascites volume and number of tumor cells. Duloxetine increased the cells of the inguinal lymph node. There was no difference in the number of cells in the bone marrow and spleen. Ascites SOD activity was greater in Duloxetine groups. There were no differences in the levels of NO, nitrite, and arginase. The number of antibody for CD3 (CD3+), CD4+, CD8+ and CD28+ cells was lower in the duloxetine groups. In conclusion, duloxetine has no direct effect on tumor growth and does not alter immunity. The drug increased the SOD that fights free radicals and led the migration of lymphocytes, suggesting that duloxetine could be used in tumor-bearing individuals

    High dose gabapentin does not alter tumor growth in mice but reduces arginase activity and increases superoxide dismutase, IL-6 and MCP-1 levels in Ehrlich ascites

    No full text
    Abstract Objectives The purpose of this study was to evaluate the effect of gabapentin on Ehrlich tumor growth in Swiss mice, a highly aggressive and inflammatory tumor model. Mice were grouped into sets of 5 animals and treated from days 2 to 8 with gabapentin 30 mg/kg body weight (G30) or 100 mg/kg body weight (G100), or normal sterile saline (control). Results The mice were euthanized on day 10. Tumor growth, tumoricidal agents and inflammatory cytokines levels were assessed. At day 10, G30 and G100 mice gained weight, but there were no differences in tumor cell count or in ascites volume. In G100, there was a reduction in arginase and an increase in SOD activities. There was an increase in IL-6 and MCP-1 levels, especially in G100, but no alterations in TNF-α. There was no direct evidence of tumor induction by gabapentin. However, the findings suggest that its use modulates immune response to a more effector and less deleterious profile, with increase in activity of anti-oxidant enzymes and in cytokines that favor activation of macrophages, which could improve the general status of the tumor host
    corecore