362 research outputs found

    Coexistence of superconductivity and antiferromagnetism in self-doped bilayer t-t'-J model

    Full text link
    A self-doped bilayer t-t'-J model of an electron- and a hole-doped planes is studied by the slave-boson mean-field theory. A hopping integral between the differently doped planes, which are generated by a site potential, are renormalized by the electron-electron correlation. We find coexistent phases of antiferromagnetic (AFM) and superconducting orders, although the magnitudes of order parameters become more dissimilar in the bilayer away from half-filling. Fermi surfaces (FS's) with the AFM order show two pockets around the nodal and the anti-nodal regions. These results look like a composite of electron- and hole-doped FS's. In the nodal direction, the FS splitting is absent even in the bilayer system, since one band is flat due to the AFM order.Comment: 6 pages, 4 figure

    Inelastic neutron scattering study on the resonance mode in an optimally doped superconductor LaFeAsO0.92_{0.92}F0.08_{0.08}

    Full text link
    An optimally doped iron-based superconductor LaFeAsO0.92_{0.92}F0.08_{0.08} with Tc=29T_c = 29 K has been studied by inelastic powder neutron scattering. The magnetic excitation at Q=1.15Q=1.15 \AA−1^{-1} is enhanced below TcT_c, leading to a peak at Eres∼13E_{res}\sim13 meV as the resonance mode, in addition to the formation of a gap at low energy below the crossover energy Δc∼10meV\Delta_{c}\sim10 meV. The peak energy at Q=1.15Q=1.15 \AA−1^{-1} corresponds to 5.2kBTc5.2 k_B T_c in good agreement with the other values of resonance mode observed in the various iron-based superconductors, even in the high-TcT_c cuprates. Although the phonon density of states has a peak at the same energy as the resonance mode in the present superconductor, the QQ-dependence is consistent with the resonance being of predominately magnetic origin.Comment: 4 pages, 5 Postscript figure

    Universality of dispersive spin-resonance mode in superconducting BaFe2As2

    Full text link
    Spin fluctuations in superconducting BaFe2(As1-xPx)2 (x=0.34, Tc = 29.5 K) are studied using inelastic neutron scattering. Well-defined commensurate magnetic signals are observed at ({\pi},0), which is consistent with the nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations in the normal state exhibit a three-dimensional character reminiscent of the AFM order in nondoped BaFe2As2. A clear spin gap is observed in the superconducting phase forming a peak whose energy is significantly dispersed along the c-axis. The bandwidth of dispersion becomes larger with approaching the AFM ordered phase universally in all superconducting BaFe2As2, indicating that the dispersive feature is attributed to three-dimensional AFM correlations. The results suggest a strong relationship between the magnetism and superconductivity.Comment: 5 pages, 5 figure

    High-Tc Nodeless s_\pm-wave Superconductivity in (Y,La)FeAsO_{1-y} with Tc=50 K: 75As-NMR Study

    Full text link
    We report 75As-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately in the normal state. These features are consistently described by the multiple fully-gapped s_\pm-wave model based on the Fermi-surface (FS) nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS multiplicity is maximized, and hence the FS nesting condition is better than that in La1111.Comment: 4 pages, 3 figures, accepted for publication in Phys Rev. Let

    Emergent Phases of Nodeless and Nodal Superconductivity Separated by Antiferromagnetic Order in Iron-based Superconductor (Ca4Al2O6)Fe2(As1-xPx)2: 75As- and 31P-NMR Studies

    Full text link
    We report 31^{31}P- and 75^{75}As-NMR studies on (Ca4_4Al2_2O6_{6})Fe2_2(As1−x_{1-x}Px_x)2_2 with an isovalent substitution of P for As. We present the novel evolution of emergent phases that the nodeless superconductivity (SC) in 0≤x≤\le x \le0.4 and the nodal one around xx=1 are intimately separated by the onset of a commensurate stripe-type antiferromagnetic (AFM) order in 0.5≤x≤\le x \le 0.95, as an isovalent substitution of P for As decreases a pnictogen height hPnh_{Pn} measured from the Fe plane. It is demonstrated that the AFM order takes place under a condition of 1.32\AA≤hPn≤\le h_{Pn} \le1.42\AA, which is also the case for other Fe-pnictides with the Fe2+^{2+} state in (FePnPn)−^{-} layers. This novel phase evolution with the variation in hPnh_{Pn} points to the importance of electron correlation for the emergence of SC as well as AFM order.Comment: 5pages, 4figures; accepted for publication as a Rapid Communication in Phys. Rev.

    Antiferromagnetic phase transition in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with T_c=55-102 K: Cu- and F-NMR studies

    Full text link
    We report on magnetic characteristics in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with apical fluorine through Cu- and F-NMR measurements. The substitution of oxygen for fluorine at the apical site increases the carrier density (N_h) and T_c from 55 K up to 102 K. The NMR measurements reveal that antiferromagnetic order, which can uniformly coexist with superconductivity, exists up to N_h = 0.15, which is somewhat smaller than N_h = 0.17 being the quantum critical point (QCP) for five-layered compounds. The fact that the QCP for the four-layered compounds moves to a region of lower carrier density than for five-layered ones ensures that the decrease in the number of CuO_2 layers makes an interlayer magnetic coupling weaker.Comment: 7 pages, 6 gigures, Submitted to J. Phys. Soc. Jp
    • …
    corecore