3,839 research outputs found

    Lagrangian perfect fluids and black hole mechanics

    Get PDF
    The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.Comment: 26 pages LaTeX-2

    Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

    Full text link
    It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong interpretation of computations correcte

    Effects of External Circuit on Heat Transfer in MHD Channel Flow

    Get PDF

    Entropy of Constant Curvature Black Holes in General Relativity

    Get PDF
    We consider the thermodynamic properties of the constant curvature black hole solution recently found by Banados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the spacetime using the Einstein-Hilbert action of General Relativity. The constant curvature black hole has some unusual properties which have not been seen in other black hole spacetimes. The entropy of the black hole is not associated with the event horizon; rather it is associated with the region between the event horizon and the observer. Further, surfaces of constant internal energy are not isotherms so the first law of thermodynamics exists only in an integral form. These properties arise from the unusual topology of the Euclidean black hole instanton.Comment: 4 pages LaTeX2e (RevTeX), 2 PostScript figures. Small corrections in the text and the reference

    String Theory and Water Waves

    Full text link
    We uncover a remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain {hat c}<1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.Comment: 49 pages, 4 figure

    Massive Charged Scalar Quasinormal Modes of Reissner-N\"ordstrom Black Hole Surrounded by Quintessence

    Full text link
    We evaluate the complex frequencies of the normal modes for the massive charged scalar field perturbations around a Reissner-N\"ordstrom black hole surrounded by a static and spherically symmetric quintessence using third order WKB approximation approach. Due to the presence of quintessence, quasinormal frequencies damp more slowly. We studied the variation of quasinormal frequencies with charge of the black bole, mass and charge of perturbating scalar field and the quintessential state parameter.Comment: 9 pages, 9 figures and one tabl

    Quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence: Electromagnetic perturbations

    Full text link
    In this paper, we evaluated the quasinormal modes of electromagnetic perturbation in a Schwarzschild black hole surrounded by the static spherically symmetric quintessence by using the third-order WKB approximation when the quintessential state parameter wq w_{q} in the range of 1/3<wq<0-1/3<w_{q}<0. Due to the presence of quintessence, Maxwell field damps more slowly. And when at 1<wq<1/3-1<w_{q}<-1/3, it is similar to the black hole solution in the ds/Ads spacetime. The appropriate boundary conditions need to be modified.Comment: 6 pages, 3 figure

    The Dirac Equation Is Separable On The Dyon Black Hole Metric

    Get PDF
    Using the tetrad formalism, we carry out the separation of variables for the massive complex Dirac equation in the gravitational and electromagnetic field of a four-parameter (mass, angular momentum, electric and magnetic charges) black hole.Comment: 13 page

    Quasi-normal modes of Schwarzschild-de Sitter black holes

    Full text link
    The low-laying frequencies of characteristic quasi-normal modes (QNM) of Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of different spin using the 6th-order WKB approximation and the approximation by the P\"{o}shl-Teller potential. The well-known asymptotic formula for large ll is generalized here on a case of the Schwarzchild-de Sitter black hole. In the limit of the near extreme Λ\Lambda term the results given by both methods are in a very good agreement, and in this limit fields of different spin decay with the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo

    Properties of the symplectic structure of General Relativity for spatially bounded spacetime regions

    Full text link
    We continue a previous analysis of the covariant Hamiltonian symplectic structure of General Relativity for spatially bounded regions of spacetime. To allow for near complete generality, the Hamiltonian is formulated using any fixed hypersurface, with a boundary given by a closed spacelike 2-surface. A main result is that we obtain Hamiltonians associated to Dirichlet and Neumann boundary conditions on the gravitational field coupled to matter sources, in particular a Klein-Gordon field, an electromagnetic field, and a set of Yang-Mills-Higgs fields. The Hamiltonians are given by a covariant form of the Arnowitt-Deser-Misner Hamiltonian modified by a surface integral term that depends on the particular boundary conditions. The general form of this surface integral involves an underlying ``energy-momentum'' vector in the spacetime tangent space at the spatial boundary 2-surface. We give examples of the resulting Dirichlet and Neumann vectors for topologically spherical 2-surfaces in Minkowski spacetime, spherically symmetric spacetimes, and stationary axisymmetric spacetimes. Moreover, we show the relation between these vectors and the ADM energy-momentum vector for a 2-surface taken in a limit to be spatial infinity in asymptotically flat spacetimes. We also discuss the geometrical properties of the Dirichlet and Neumann vectors and obtain several striking results relating these vectors to the mean curvature and normal curvature connection of the 2-surface. Most significantly, the part of the Dirichlet vector normal to the 2-surface depends only the spacetime metric at this surface and thereby defines a geometrical normal vector field on the 2-surface. Properties and examples of this normal vector are discussed.Comment: 46 pages; minor errata corrected in Eqs. (3.15), (3.24), (4.37) and in discussion of examples in sections IV B,
    corecore