6,194 research outputs found

    Factors influencing decisions on delay claims in construction contracts for Indian scenario

    Get PDF
      Construction industry in India is second largest next to agriculture. In current era of infrastructure development construction projects occupy a key position. In any construction project contract time and cost overrun is a common feature, which gives rise to claims leading to disputes. These disputes if not handled properly tend to consume time and money of all parties to the contract. To resolve the dispute in optimum time, it is essential to understand the root cause of disputes as early as possible. Hence there is a need of analyzing the disputes scientifically.  The present study reveals from the study of arbitration awards that the causes for delay claims can be grouped in domains and the probable decisions to the disputes can be traced through the probing questions considered by decision makers. This paper attempts to identify questions related to disputes for Indian scenario through literature, arbitration awards, court cases and discussions with professionals

    Magnetic anomalies in single crystalline ErPd2Si2

    Full text link
    Considering certain interesting features in the previously reported 166Er Moessbauer effect and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8 to 300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in the features due to magnetic ordering in the plot of magnetic susceptibility (chi) versus temperature (T) at low temperatures. The chi(T) data reveal that there is a pseudo-low dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic ordering setting in at a lower temperature (3.8 K). A new finding in the chi(T) data is that, for H//, but not for H//, there is a broad shoulder in the range 8-20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Moessbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal complex nature of the magnetism of this compound

    Complete adiabatic waveform templates for a test-mass in the Schwarzschild spacetime: VIRGO and Advanced LIGO studies

    Full text link
    Post-Newtonian expansions of the binding energy and gravitational wave flux truncated at the {\it same relative} post-Newtonian order form the basis of the {\it standard adiabatic} approximation to the phasing of gravitational waves from inspiralling compact binaries. Viewed in terms of the dynamics of the binary, the standard approximation is equivalent to neglecting certain conservative post-Newtonian terms in the acceleration. In an earlier work, we had proposed a new {\it complete adiabatic} approximant constructed from the energy and flux functions. At the leading order it employs the 2PN energy function rather than the 0PN one in the standard approximation, so that, effectively the approximation corresponds to the dynamics where there are no missing post-Newtonian terms in the acceleration. In this paper, we compare the overlaps of the standard and complete adiabatic templates with the exact waveform in the adiabatic approximation of a test-mass motion in the Schwarzschild spacetime, for the VIRGO and the Advanced LIGO noise spectra. It is found that the complete adiabatic approximants lead to a remarkable improvement in the {\it effectualness} at lower PN (<< 3PN) orders, while standard approximants of order \geq 3PN provide a good lower-bound to the complete approximants for the construction of effectual templates. {\it Faithfulness} of complete approximants is better than that of standard approximants except for a few post-Newtonian orders. Standard and complete approximants beyond the adiabatic approximation are also studied using the Lagrangian templates of Buonanno, Chen and Vallisneri.Comment: Proceedings of the GWDAW-9, Accepted for publication in Class. Quant. Gra

    Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope

    Get PDF
    General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitationalwave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44 Msun. The choice of the lower frequency cut off is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.Comment: 18 pages, 11 figures, Matches with the published versio

    High Energy Neutrino Signals of Four Neutrino Mixing

    Full text link
    We evaluate the upward shower and muon event rates for two characteristic four neutrino mixing models for extragalactic neutrinos, as well as for the atmospheric neutrinos, with energy thresholds of 1 TeV, 10 TeV and 100 TeV. We show that by comparing the shower to muon event rates, one can distinguish between oscillation and no-oscillation models. By measuring shower and muon event rates for energy thresholds of 10 TeV and 100 TeV, and by considering their ratio, it is possible to use extragalactic neutrino sources to determine the type of four-flavor mixing pattern. We find that one to ten years of data taking with kilometer-size detector has a very good chance of providing valuable information about the physics beyond the Standard Model.Comment: version accepted for publication in Phys. Rev.

    Dynamics of the STAT3 Transcription Factor: Nuclear Import Dependent on Ran and Importin-β1

    Get PDF
    The signal transducer and activator of transcription-3 (STAT3) induces transcription of genes that control differentiation, inflammation, proliferation, and tumor cell invasion. Cytokines such as interleukin-6 and interferon stimulate the specific tyrosine phosphorylation of STAT3, which confers its ability to bind consensus DNA targets. In addition, unphosphorylated STAT3 has been demonstrated to induce specific gene expression. STAT3 must gain entrance to the nucleus to impact transcription, however access to the nucleus is a tightly regulated process. Because nuclear trafficking is critical to the function of STAT3, we investigated the molecular mechanisms by which STAT3 is imported to the nucleus. Live cell imaging techniques were used with STAT3 tagged with green fluorescence protein (GFP) or photoactivatable GFP to follow the cellular dynamics of both unphosphorylated and tyrosine phosphorylated forms. Cytokine activation did not alter the rate of STAT3 nuclear import or nuclear export. In addition, Förster resonance energy transfer experiments revealed homomeric interaction of unphosphorylated STAT3 dependent on its amino terminus, but this dimerization is not necessary for its nuclear import. Previous work demonstrated the adapter importin-α3 binds to STAT3 and is required for nuclear import. To determine whether STAT3 nuclear import is mediated by the importin-α/importin-β1 heterodimer, the effects of siRNA to importin-β1 were evaluated. Results indicate STAT3 nuclear import is dependent on the function of importin-β1. Since the Ran GTPase is necessary to bind importin-β1 in the nucleus for release of importin-α-cargo, the effect of a GTPase deficient mutant of Ran was tested. Expression of the Ran interfering mutant inhibited STAT3 nuclear import. This study defines importin-α/importin-β1/Ran as the molecular mechanism by which STAT3 traffics to the nucleus

    Non-magnetic left-handed material

    Full text link
    We develop a new approach to build a material with negative refraction index. In contrast to conventional designs which make use of a resonant behavior to achieve a non-zero magnetic response, our material is intrinsically non-magnetic and relies on an anisotropic dielectric constant to provide a left-handed response in waveguide geometry. We demonstrate that the proposed material can support surface (polariton) waves, and show the connection between polaritons and the enhancement of evanescent fields, also referred to as super-lensing

    Conserved masses in GHS Einstein and string black holes

    Full text link
    We analyze the relationship between quasilocal masses calculated for solutions of conformally related theories. We show that the ADM mass of a static, spherically symmetric solution is conformally invariant (up to a constant factor) only if the background action functional is conformally invariant. Thus, the requirement of conformal invariance places restrictions on the choice of reference spacetimes. We calculate the mass of the black hole solutions obtained by Garfinkle, Horowitz, and Strominger (GHS) for both the string and the Einstein metrics. In addition, the quasilocal thermodynamic quantities in the string metrics are computed and discussed.Comment: 16 pages REVTeX with packages amsfonts and amssym

    Quasi-normal modes of charged, dilaton black holes

    Get PDF
    In this paper we study the perturbations of the charged, dilaton black hole, described by the solution of the low energy limit of the superstring action found by Garfinkle, Horowitz and Strominger. We compute the complex frequencies of the quasi-normal modes of this black hole, and compare the results with those obtained for a Reissner-Nordstr\"{o}m and a Schwarzschild black hole. The most remarkable feature which emerges from this study is that the presence of the dilaton breaks the \emph{isospectrality} of axial and polar perturbations, which characterizes both Schwarzschild and Reissner-Nordstr\"{o}m black holes.Comment: 15 pages, 5 figure

    A tolerance interval for the normal distribution with several variance components

    Get PDF
    Abstract: A tolerance interval procedure is derived from the concept of generalized pivotal quantities usually used to obtain confidence intervals in situations where standard procedures do not lead to useful solutions. We apply the generalized confidence intervals approach and propose a two-sided tolerance interval for the distribution N (θ, Some practical examples are given to illustrate the applications of the proposed procedure. A simulation study is conducted to evaluate its frequentist coverage probability. The results indicate that the proposed method may be recommended for use in practical applications. The procedure provided in this paper can be applied to tolerance interval questions arising in arbitrary normal balanced mixed linear model situations
    corecore