4,015 research outputs found

    Lagrangian perfect fluids and black hole mechanics

    Get PDF
    The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.Comment: 26 pages LaTeX-2

    The Frenet Serret Description of Gyroscopic Precession

    Get PDF
    The phenomenon of gyroscopic precession is studied within the framework of Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to the congruence vorticity is highlighted with particular reference to the irrotational congruence admitted by the stationary, axisymmetric spacetime. General precession formulae are obtained for circular orbits with arbitrary constant angular speeds. By successive reduction, different types of precessions are derived for the Kerr - Schwarzschild - Minkowski spacetime family. The phenomenon is studied in the case of other interesting spacetimes, such as the De Sitter and G\"{o}del universes as well as the general stationary, cylindrical, vacuum spacetimes.Comment: 37 pages, Paper in Late

    Entropy of Constant Curvature Black Holes in General Relativity

    Get PDF
    We consider the thermodynamic properties of the constant curvature black hole solution recently found by Banados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the spacetime using the Einstein-Hilbert action of General Relativity. The constant curvature black hole has some unusual properties which have not been seen in other black hole spacetimes. The entropy of the black hole is not associated with the event horizon; rather it is associated with the region between the event horizon and the observer. Further, surfaces of constant internal energy are not isotherms so the first law of thermodynamics exists only in an integral form. These properties arise from the unusual topology of the Euclidean black hole instanton.Comment: 4 pages LaTeX2e (RevTeX), 2 PostScript figures. Small corrections in the text and the reference

    Asymmetric Light Bending in the Equatorial Kerr Metric

    Full text link
    The observation of the bending of light by mass, now known as gravitational lensing, was key in establishing general relativity as one of the pillars of modern physics. In the past couple of decades, there has been increasing interest in using gravitational lensing to test general relativity beyond the weak deflection limit. Black holes and neutron stars produce the strong gravitational fields needed for such tests. For a rotating compact object, the distinction between prograde and retrograde photon trajectories becomes important. In this paper, we explore subtleties that arise in interpreting the bending angle in this context and address the origin of seemingly contradictory results in the literature. We argue that analogies that cannot be precisely quantified present a source of confusion

    Effects of External Circuit on Heat Transfer in MHD Channel Flow

    Get PDF

    Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

    Full text link
    It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong interpretation of computations correcte

    String Theory and Water Waves

    Full text link
    We uncover a remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain {hat c}<1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.Comment: 49 pages, 4 figure

    Non-magnetic left-handed material

    Full text link
    We develop a new approach to build a material with negative refraction index. In contrast to conventional designs which make use of a resonant behavior to achieve a non-zero magnetic response, our material is intrinsically non-magnetic and relies on an anisotropic dielectric constant to provide a left-handed response in waveguide geometry. We demonstrate that the proposed material can support surface (polariton) waves, and show the connection between polaritons and the enhancement of evanescent fields, also referred to as super-lensing
    corecore