5 research outputs found
IRDO: Iris Recognition by Fusion of DTCWT and OLBP
Iris Biometric is a physiological trait of human beings. In this paper, we propose Iris an Recognition using Fusion of Dual Tree Complex Wavelet Transform (DTCWT) and Over Lapping Local Binary Pattern (OLBP) Features. An eye is preprocessed to extract the iris part and obtain the Region of Interest (ROI) area from an iris. The complex wavelet features are extracted for region from the Iris DTCWT. OLBP is further applied on ROI to generate features of magnitude coefficients. The resultant features are generated by fusing DTCWT and OLBP using arithmetic addition. The Euclidean Distance (ED) is used to compare test iris with database iris features to identify a person. It is observed that the values of Total Success Rate (TSR) and Equal Error Rate (EER) are better in the case of proposed IRDO compared to the state-of-the art technique
The Consortium on Vulnerability to Externalising Disorders and Addictions (c-VEDA): an accelerated longitudinal cohort of children and adolescents in India.
The global burden of disease attributable to externalising disorders such as alcohol misuse calls urgently for effective prevention and intervention. As our current knowledge is mainly derived from high-income countries such in Europe and North-America, it is difficult to address the wider socio-cultural, psychosocial context, and genetic factors in which risk and resilience are embedded in low- and medium-income countries. c-VEDA was established as the first and largest India-based multi-site cohort investigating the vulnerabilities for the development of externalising disorders, addictions, and other mental health problems. Using a harmonised data collection plan coordinated with multiple cohorts in China, USA, and Europe, baseline data were collected from 7 study sites between November 2016 and May 2019. 9010 participants between the ages of 6 and 23 were assessed during this time, amongst which 1278 participants underwent more intensive assessments including MRI scans. Both waves of follow-ups have started according to the accelerated cohort structure with planned missingness design. Here we present descriptive statistics on several key domains of assessments, and the full baseline dataset will be made accessible for researchers outside the consortium in September 2019. More details can be found on our website [cveda.org]