5 research outputs found
Removal of Pb(II) Ions Using Polymer Inclusion Membranes Containing Calix[4]resorcinarene Derivative as Ion Carrier
Stricter environmental regulations regarding the discharge of toxic metals require developing various technologies for the removal of these metals from polluted effluents. The removal of toxic metal ions using immobilized membranes with doped ligands is a promising approach for enhancing environmental quality, because of the high selectivity and removal efficiency, high stability, and low energy requirements of the membranes. Cellulose triacetate-based polymer inclusion membranes (PIMs), with calix[4]resorcinarene derivative as an ion carrier, were analyzed to determine their ability for removal of Pb(II) ions from aqueous solutions. The effects of ion carrier concentration, plasticizer amount, pH of source aqueous phase, and receiving agents on the effective transport of Pb(II) were determined. All studied parameters were found to be important factors for the transport of Pb(II) ions. The PIM containing calix[4]resorcinarene derivative as an ion carrier showed high stability and excellent transport activity for selective removal of Pb(II) from the battery industry effluent, with a separation efficiency of 90%
Separation of Mercury(II) from Industrial Wastewater through Polymer Inclusion Membranes with Calix[4]pyrrole Derivative
Polymer membranes with immobilized ligands are encouraging alternatives for the removal of toxic metal ions from aquatic waste streams, including industrial wastewater, in view of their high selectivity, stability, removal efficacy and low energy demands. In this study, polymer inclusion membranes (PIMs) based on cellulose triacetate, with a calix[4]pyrrole derivative as an ion carrier, were tested for their capability to dispose mercury (Hg(II)) ions from industrial wastewater. The impacts were assessed relative to carrier content, the quantity of plasticizer in the membrane, the hydrocholoric acid concentration in the source phase, and the character of the receiving phase on the performance of Hg(II) elimination. Optimally designed PIMs could be an interesting option for the industrial wastewater treatment due to the high removal efficiency of Hg(II) and great repeatability
Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole
The effective purification of aqueous solutions of methylene blue dye was tested using polymer inclusion membranes (PIMs) that contained cellulose triacetate (CTA) as a polymer base, o-nitrophenyl octyl ether (o-NPOE) as a plasticizer, and meso-tetra methyl tetrakis-[methyl-2-(4-acetlphenoxy)] calix[4]pyrrole (KP) as a carrier. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to define the microstructure and surface of PIMs. Experimental results showed that, with an increased concentration of methylene blue in an aqueous solution, the removal percentage also increased. Further observation showed that the flux increased with the rise in the source phase pH values from 3 to 10. The carrier and plasticizer content in the membrane significantly influenced the membrane’s transport properties. The optimal composition of the membrane in percent by weight for KP was 74% plasticizer; 18% support, and 8% carrier. The maximum MB removal (93.10%) was achieved at 0.10 M HCl solution as the receiving phase. It was shown that the membrane with optimal composition showed good reusability and enabled the easy and spontaneous separation of methylene blue from aqueous solutions