78 research outputs found

    片脚および両脚着地時の下肢関節角度と筋活動

    Full text link

    Single-Stage Arthroscopic Anterior and Posterior Cruciate Ligament Repairs and Open Medial Collateral Ligament Repair for Acute Knee Dislocation

    Full text link
    Till date, there are no clear guidelines regarding the treatment of multiple ligament knee injuries. Ligament repair is advantageous as it preserves proprioception and does not involve grafting. Many studies have reported the use of open repair and reconstruction for multiple ligament knee injuries; however, reports on arthroscopic-combined single-stage anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) repairs are scarce. In this report, we describe a case of type III knee dislocation (ACL, PCL, and medial collateral ligament (MCL) injuries) in a 43-year-old man, caused by contact while playing futsal. On the sixth day after injury, arthroscopic ACL and PCL repairs were performed with open MCL repair. The proximal lesions in the three ligaments that were injured were sutured using no. 2 strong surgical sutures. The ACL was pulled out to the lateral condyle of the femur and fixed using a suspensory fixation device. The PCL was pulled out to the medial condyle of the femur, and the MCL was pulled towards the proximal end of the femur; both were fixed using suture anchors. Early mobilization was performed, and both, clinical and imaging outcomes, were good two years after surgery

    Preparation of Tris(spiroorthocarbonate) Cyclophanes as Back to Back Ditopic Hosts

    Full text link
    Twin-bowl-shaped tris(spiroorthocarbonate) cyclophanes were designed and prepared as ditopic hosts for electrically neutral or electron-rich guests. Preparation of the desired cyclophanes was achieved by cyclotrimerization of 2,2′,3,3′-tetrahydroxy-1,1′-binaphthyl (THB) via the transesterification of tetraphenyl orthocarbonate or dichlorodiphenoxymethane. In those reactions, bis(spiroorthocarbonate) cyclophane containing two THB units was also formed as the kinetically favored product. The spiroorthocarbonate twin bowl exhibited ditopic molecular recognition toward fullerene C<sub>60</sub> in the crystalline state

    Preparation of Tris(spiroorthocarbonate) Cyclophanes as Back to Back Ditopic Hosts

    Full text link
    Twin-bowl-shaped tris(spiroorthocarbonate) cyclophanes were designed and prepared as ditopic hosts for electrically neutral or electron-rich guests. Preparation of the desired cyclophanes was achieved by cyclotrimerization of 2,2′,3,3′-tetrahydroxy-1,1′-binaphthyl (THB) via the transesterification of tetraphenyl orthocarbonate or dichlorodiphenoxymethane. In those reactions, bis(spiroorthocarbonate) cyclophane containing two THB units was also formed as the kinetically favored product. The spiroorthocarbonate twin bowl exhibited ditopic molecular recognition toward fullerene C<sub>60</sub> in the crystalline state

    Preparation of Tris(spiroorthocarbonate) Cyclophanes as Back to Back Ditopic Hosts

    Full text link
    Twin-bowl-shaped tris(spiroorthocarbonate) cyclophanes were designed and prepared as ditopic hosts for electrically neutral or electron-rich guests. Preparation of the desired cyclophanes was achieved by cyclotrimerization of 2,2′,3,3′-tetrahydroxy-1,1′-binaphthyl (THB) via the transesterification of tetraphenyl orthocarbonate or dichlorodiphenoxymethane. In those reactions, bis(spiroorthocarbonate) cyclophane containing two THB units was also formed as the kinetically favored product. The spiroorthocarbonate twin bowl exhibited ditopic molecular recognition toward fullerene C<sub>60</sub> in the crystalline state
    corecore