2,047 research outputs found
Hall effect of quasi-hole gas in organic single-crystal transistors
Hall effect is detected in organic field-effect transistors, using
appropriately shaped rubrene (C42H28) single crystals. It turned out that
inverse Hall coefficient, having a positive sign, is close to the amount of
electric-field induced charge upon the hole accumulation. The presence of the
normal Hall effect means that the electromagnetic character of the surface
charge is not of hopping carriers but resembles that of a two-dimensional
hole-gas system
Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems
This paper clarifies the microscopic nature of the staggered scalar order,
which is specific to even number of f electrons per site. In such systems,
crystalline electric field (CEF) can make a singlet ground state. As exchange
interaction with conduction electrons increases, the CEF singlet at each site
gives way to Kondo singlets. The collective Kondo singlets are identified with
itinerant states that form energy bands. Near the boundary of itinerant and
localized states, a new type of electronic order appears with staggered Kondo
and CEF singlets. We present a phenomenological three-state model that
qualitatively reproduces the characteristic phase diagram, which have been
obtained numerically with use of the continuous-time quantum Monte Carlo
combined with the dynamical mean-field theory. The scalar order observed in
PrFe_4P_{12} is ascribed to this staggered order accompanying charge density
wave (CDW) of conduction electrons. Accurate photoemission and tunneling
spectroscopy should be able to probe sharp peaks below and above the Fermi
level in the ordered phase.Comment: 7 pages, 8 figure
A non-metrizable collectionwise Hausdorff tree with no uncountable chains and no Aronszajn subtrees
summary:It is independent of the usual (ZFC) axioms of set theory whether every collectionwise Hausdorff tree is either metrizable or has an uncountable chain. We show that even if we add ``or has an Aronszajn subtree,'' the statement remains ZFC-independent. This is done by constructing a tree as in the title, using the set-theoretic hypothesis , which holds in Gödel's Constructible Universe
Solution of reduced equations derived with singular perturbation methods
For singular perturbation problems in dynamical systems, various appropriate
singular perturbation methods have been proposed to eliminate secular terms
appearing in the naive expansion. For example, the method of multiple time
scales, the normal form method, center manifold theory, the renormalization
group method are well known. In this paper, it is shown that all of the
solutions of the reduced equations constructed with those methods are exactly
equal to sum of the most divergent secular terms appearing in the naive
expansion. For the proof, a method to construct a perturbation solution which
differs from the conventional one is presented, where we make use of the theory
of Lie symmetry group.Comment: To be published in Phys. Rev.
Microscopic Mechanism for Staggered Scalar Order in PrFe4P12
A microscopic model is proposed for the scalar order in PrFe4P12 where f2
crystalline electric field (CEF) singlet and triplet states interact with two
conduction bands. By combining the dynamical mean-field theory and the
continuous-time quantum Monte Carlo, we obtain an electronic order with
staggered Kondo and CEF singlets with the total conduction number being unity
per site. The ground state becomes semimetallic provided that the two
conduction bands have different occupation numbers. This model naturally
explains experimentally observed properties in the ordered phase of PrFe4P12
such as the scalar order parameter, temperature dependence of the resistivity,
field-induced staggered moment, and inelastic features in neutron scattering.
The Kondo effect plays an essential role for ordering, in strong contrast with
ordinary magnetic orders by the RKKY interaction.Comment: 4 pages, 4figure
Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12
Electronic state evolution in the metal-non-metal transition of PrRu4P12 has
been studied by X-ray and polarized neutron diffraction experiments. It has
been revealed that, in the low-temperature non-metallic phase, two inequivalent
crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2)
ground states are located at Pr1 and Pr2 sites forming the bcc unit cell
surrounded by the smaller and larger cubic Ru-ion sublattices, respectively.
This modulated electronic state can be explained by the p-f hybridization
mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f
hybridization effect plays an important role for the electronic energy gain in
the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp
A Field Effect Transitor based on the Mott Transition in a Molecular Layer
Here we propose and analyze the behavior of a FET--like switching device, the
Mott transition field effect transistor, operating on a novel principle, the
Mott metal--insulator transition. The device has FET-like characteristics with
a low ``ON'' impedance and high ``OFF'' impedance. Function of the device is
feasible down to nanoscale dimensions. Implementation with a class of organic
charge transfer complexes is proposed.Comment: Revtex 11pages, Figures available upon reques
Charge transfer excitons in optical absorption spectra of C60-dimers and polymers
Charge-transfer (CT) exciton effects are investigated for the optical
absorption spectra of crosslinked C60 systems by using the intermediate exciton
theory. We consider the C60-dimers, and the two (and three) molecule systems of
the C60-polymers. We use a tight-binding model with long-range Coulomb
interactions among electrons, and the model is treated by the Hartree-Fock
approximation followed by the single-excitation configuration interaction
method. We discuss the variations in the optical spectra by changing the
conjugation parameter between molecules. We find that the total CT-component
increases in smaller conjugations, and saturates at the intermediate
conjugations. It decreases in the large conjugations. We also find that the
CT-components of the doped systems are smaller than those of the neutral
systems, indicating that the electron-hole distance becomes shorter in the
doped C60-polymers.Comment: Figures should be requested to the autho
Social evolution leads to persistent corruption
Cooperation can be sustained by institutions that punish free-riders. Such institutions, however, tend to be subverted by corruption if they are not closely watched. Monitoring can uphold the enforcement of binding agreements ensuring cooperation, but this usually comes at a price. The temptation to skip monitoring and take the institutionâs integrity for granted leads to outbreaks of corruption and the breakdown of cooperation. We model the corresponding mechanism by means of evolutionary game theory, using analytical methods and numerical simulations, and find that it leads to sustained or damped oscillations. The results confirm the view that corruption is endemic and transparency a major factor in reducing it
- âŠ