23 research outputs found

    Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study

    Get PDF
    BACKGROUND: Two recombinant enzymes (agalsidase alfa 0.2 mg/kg/every other week and agalsidase beta 1.0 mg/kg/every other week) have been registered for the treatment of Fabry disease (FD), at equal high costs. An independent international initiative compared clinical and biochemical outcomes of the two enzymes. METHODS: In this multicentre retrospective cohort study, clinical event rate, left ventricular mass index (LVMI), estimated glomerular filtration rate (eGFR), antibody formation and globotriaosylsphingosine (lysoGb3) levels were compared between patients with FD treated with agalsidase alfa and beta at their registered dose after correction for phenotype and sex. RESULTS: 387 patients (192 women) were included, 248 patients received agalsidase alfa. Mean age at start of enzyme replacement therapy was 46 (±15) years. Propensity score matched analysis revealed a similar event rate for both enzymes (HR 0.96, P=0.87). The decrease in plasma lysoGb3 was more robust following treatment with agalsidase beta, specifically in men with classical FD (β: -18 nmol/L, P<0.001), persisting in the presence of antibodies. The risk to develop antibodies was higher for patients treated with agalsidase beta (OR 2.8, P=0.04). LVMI decreased in a higher proportion following the first year of agalsidase beta treatment (OR 2.27, P=0.03), while eGFR slopes were similar. CONCLUSIONS: Treatment with agalsidase beta at higher dose compared with agalsidase alfa does not result in a difference in clinical events, which occurred especially in those with more advanced disease. A greater biochemical response, also in the presence of antibodies, and better reduction in left ventricular mass was observed with agalsidase beta

    F-18-Fluorodeoxyglucose Positron Emission Tomography Imaging-Assisted Management of Patients With Severe Left Ventricular Dysfunction and Suspected Coronary Disease A Randomized, Controlled Trial (PARR-2)

    Get PDF
    ObjectivesWe conducted a randomized trial to assess the effectiveness of F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET)-assisted management in patients with severe ventricular dysfunction and suspected coronary disease.BackgroundSuch patients may benefit from revascularization, but have significant perioperative morbidity and mortality. F-18-fluorodeoxyglucose PET can detect viable myocardium that might recover after revascularization.MethodsIncluded were patients with severe left ventricular (LV) dysfunction and suspected coronary disease being considered for revascularization, heart failure, or transplantation work-ups or in whom PET was considered potentially useful. Patients were stratified according to recent angiography or not, then randomized to management assisted by FDG PET (n = 218) or standard care (n = 212). The primary outcome was the composite of cardiac death, myocardial infarction, or recurrent hospital stay for cardiac cause, within 1 year.ResultsAt 1 year, the cumulative proportion of patients who had experienced the composite event was 30% (PET arm) versus 36% (standard arm) (relative risk 0.82, 95% confidence interval [CI] 0.59 to 1.14; p = 0.16). The hazard ratio (HR) for the composite outcome, PET versus standard care, was 0.78 (95% CI 0.58 to 1.1; p = 0.15); for patients that adhered to PET recommendations for revascularization, revascularization work-up, or neither, HR = 0.62 (95% CI 0.42 to 0.93; p = 0.019); in those without recent angiography, for cardiac death, HR = 0.4 (95% CI 0.17 to 0.96; p = 0.035).ConclusionsThis study did not demonstrate a significant reduction in cardiac events in patients with LV dysfunction and suspected coronary disease for FDG PET-assisted management versus standard care. In those who adhered to PET recommendations and in patients without recent angiography, significant benefits were observed. The utility of FDG PET is best realized in this subpopulation and when adherence to recommendations can be achieved

    Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease

    No full text
    Abstract Background Although it is known that Anderson-Fabry Disease (AFD) can mimic the morphologic manifestations of hypertrophic cardiomyopathy (HCM) on echocardiography, there is a lack of cardiovascular magnetic resonance (CMR) literature on this. There is limited information in the published literature on the distribution of myocardial fibrosis in patients with AFD, with scar reported principally in the basal inferolateral midwall. Methods All patients with confirmed AFD undergoing CMR at our center were included. Left ventricular (LV) volumes, wall thicknesses and scar were analyzed offline. Patients were categorized into 4 groups: 1) no wall thickening; 2) concentric hypertrophy; 3) asymmetric septal hypertrophy (ASH); and 4) apical hypertrophy. Charts were reviewed for clinical information. Results Thirty-nine patients were included (20 males [51 %], median age 45.2 years [range 22.3–64.4]). Almost half (17/39) had concentric wall thickening. Almost half (17/39) had pathologic LV scar; three quarters of these (13/17) had typical inferolateral midwall scar. A quarter (9/39) had both concentric wall thickening and typical inferolateral scar. A subgroup with ASH and apical hypertrophy (n = 5) had greater maximum wall thickness, total LV scar, apical scar and mid-ventricular scar than those with concentric hypertrophy (n = 17, p < 0.05). Patients with elevated LVMI had more overall arrhythmia (p = 0.007) more ventricular arrhythmia (p = 0.007) and sustained ventricular tachycardia (p = 0.008). Conclusions Concentric thickening and inferolateral mid-myocardial scar are the most common manifestations of AFD, but the spectrum includes cases morphologically identical to apical and ASH subtypes of HCM and these have more apical and mid-ventricular LV scar. Significant LVH is associated with ventricular arrhythmia

    Use of Myocardial T1 Mapping at 3.0 T to Differentiate Anderson-Fabry Disease from Hypertrophic Cardiomyopathy

    No full text
    Purpose To compare left ventricular (LV) and right ventricular (RV) 3.0-T cardiac magnetic resonance (MR) imaging T1 values in Anderson-Fabry disease (AFD) and hypertrophic cardiomyopathy (HCM) and evaluate the diagnostic value of native T1 values beyond age, sex, and conventional imaging features. Materials and Methods For this prospective study, 30 patients with gene-positive AFD (37% male; mean age ± standard deviation, 45.0 years ± 14.1) and 30 patients with HCM (57% male; mean age, 49.3 years ± 13.5) were prospectively recruited between June 2016 and September 2017 to undergo cardiac MR imaging T1 mapping with a modified Look-Locker inversion recovery (MOLLI) acquisition scheme at 3.0 T (repetition time msec/echo time msec, 280/1.12; section thickness, 8 mm). LV and RV T1 values were evaluated. Statistical analysis included independent samples t test, receiver operating characteristic curve analysis, multivariable logistic regression, and likelihood ratio test. Results Septal LV, global LV, and RV native T1 values were significantly lower in AFD compared with those in HCM (1161 msec ± 47 vs 1296 msec ± 55, respectively [P &lt; .001]; 1192 msec ± 52 vs 1268 msec ± 55 [P &lt; .001]; and 1221 msec ± 54 vs 1271 msec ± 37 [P = .001], respectively). A septal LV native T1 cutoff point of 1220 msec or lower distinguished AFD from HCM with sensitivity of 97%, specificity of 93%, and accuracy of 95%. Septal LV native T1 values differentiated AFD from HCM after adjustment for age, sex, and conventional imaging features (odds ratio, 0.94; 95% confidence interval: 0.91, 0.98; P = &lt; .001). In a nested logistic regression model with age, sex, and conventional imaging features, model fit was significantly improved by the addition of septal LV native T1 values (χ2 [df = 1] = 33.4; P &lt; .001). Conclusion Cardiac MR imaging native T1 values at 3.0 T are significantly lower in patients with AFD compared with those with HCM and provide independent and incremental diagnostic value beyond age, sex, and conventional imaging features. © RSNA, 2018.</p
    corecore