740 research outputs found

    Small GTPase ‘Rop’: molecular switch for plant defense responses

    Get PDF
    AbstractThe conserved Rho family of GTPases (Rho, Rac, and Cdc42) in fungi and mammals has emerged as a key regulator of diverse cellular activities, such as cytoskeletal rearrangements, programmed cell death, stress-induced signaling, and cell growth and differentiation. In plants, a unique class of Rho-like proteins, most closely related to mammalian Rac, has only been found and termed ‘Rop’ (Rho-related GTPase from plant [Li et al. (1998) Plant Physiol. 118, 407–417; Yang (2002) Plant Cell 14, S375–S388]). ROPs have been implicated in regulating various plant cellular responses including defense against pathogens. It has been shown that ROPs, like mammalian Rac, trigger hydrogen peroxide production and hence the ‘oxidative burst’, a crucial component associated with the cell death, most likely via activation of nicotinamide adenine dinucleotide phosphate oxidase in both monocotyledonous and dicotyledonous species. Recent studies have established that ROPs also function as a molecular switch for defense signaling pathway(s) linked with disease resistance. As discerning the defense pathway remains one of the priority research areas in the field of plant biology, this review is therefore particularly focused on recent progresses that have been made towards understanding the plant defense responses mediated by ROPs

    Oxygen ultra-fine bubbles water administration prevents bone loss of glucocorticoid-induced osteoporosis in mice by suppressing osteoclast differentiation

    Full text link
    Summary: Oxygen ultra-fine bubbles (OUB) saline injection prevents bone loss of glucocorti\coid-induced osteoporosis in mice, and OUB inhibit osteoclastogenesis via RANK-TRAF6-c-Fos-NFATc1 signaling and RANK-p38 MAPK signaling in vitro. Introduction: Ultra-fine bubbles (<200 nm in diameter) have several unique properties, and they are tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUB) on glucocorticoid-induced osteoporosis (GIO) model mice. Methods: Prednisolone (PSL, 5 mg) was subcutaneously inserted in 6-month-old male C57BL/6J mice, and 200 μl of saline, OUB-diluted saline, or nitrogen ultra-fine bubbles (NUB)-diluted saline was intraperitoneally injected three times per week for 8 weeks the day after operations. Mice were divided into four groups; (1) control, sham-operation + saline; (2) GIO, PSL + saline; (3) GIO + OUB, PSL + OUB saline; (4) GIO + NUB, PSL + NUB saline. The effects of OUB on osteoblasts and osteoclasts were examined by serially diluted OUB medium in vitro. Results: Bone mass was significantly decreased in GIO [bone volume/total volume (%): control vs. GIO 12.6 vs. 7.9; p < 0.01] while significantly preserved in GIO + OUB (GIO vs. GIO + OUB 7.9 vs. 12.9; p < 0.05). In addition, tartrate-resistant acid phosphatase (TRAP)-positive cells in the distal femur [mean osteoclasts number/bone surface (mm−1)] was significantly increased in GIO (control vs. GIO 6.8 vs. 11.6; p < 0.01) while suppressed in GIO + OUB (GIO vs. GIO + OUB 11.6 vs. 7.5; p < 0.01). NUB did not affect these parameters. In vitro experiments revealed that OUB significantly inhibited osteoclastogenesis by inhibiting RANK-TRAF6-c-Fos-NFATc1 signaling, RANK-p38 MAPK signaling, and TRAP/Cathepsin K/DC-STAMP mRNA expression in a concentration-dependent manner. OUB did not affect osteoblastogenesis in vitro. Conclusions: OUB prevent bone loss in GIO mice by inhibiting osteoclastogenesis.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00198-016-3830-1Noguchi T., Ebina K., Hirao M., et al. Oxygen ultra-fine bubbles water administration prevents bone loss of glucocorticoid-induced osteoporosis in mice by suppressing osteoclast differentiation. Osteoporosis International 28, 1063 (2017); https://doi.org/10.1007/s00198-016-3830-1

    Development of Thick-foil and Fine-pitch GEMs with a Laser Etching Technique

    Full text link
    We have produced thick-foil and fine-pitch gas electron multipliers (GEMs) using a laser etching technique. To improve production yield we have employed a new material, Liquid Crystal Polymer, instead of polyimide as an insulator layer. The effective gain of the thick-foil GEM with a hole pitch of 140 um, a hole diameter of 70 um, and a thickness of 100 um reached a value of 10^4 at an applied voltage of 720 V. The measured effective gain of the thick-foil and fine-pitch GEM (80 um pitch, 40 um diameter, and 100 um thick) was similar to that of the thick-foil GEM. The gain stability was measured for the thick-foil and fine-pitch GEM, showing no significant increase or decrease as a function of elapsed time from applying the high voltage. The gain stability over 3 h of operation was about 0.5%. Gain mapping across the GEM showed a good uniformity with a standard deviation of about 4%. The distribution of hole diameters across the GEM was homogeneous with a standard deviation of about 3%. There was no clear correlation between the gain and hole diameter maps.Comment: 21 pages, 9 figure

    Impact of switching oral bisphosphonates to denosumab or daily teriparatide on the progression of radiographic joint destruction in patients with biologic-naïve rheumatoid arthritis

    Full text link
    Summary: In biologic-naïve female RA patients, switching oral BPs to DMAb significantly reduced radiographic joint destruction compared to continuing oral BPs or switching to TPTD at 12 months, which were significantly associated with a decrease of a bone resorption marker at 6 months. Introduction: The aim of this study was to clarify the effects of switching oral bisphosphonates (BPs) to denosumab (DMAb) or daily teriparatide (TPTD) on the progression of radiographic joint destruction in patients with biologic-naïve rheumatoid arthritis (RA). Methods: A retrospective, case-controlled study involving 90 female RA patients (mean age 68.2 years, 96.7% postmenopausal, disease activity score assessing 28 joints with CRP (DAS28-CRP) 2.4, methotrexate treatment 81.1%, prednisolone treatment 68.9%, and prior BP treatment 44.8 months), who were allocated depending on each patient’s and physician’s wishes, to (1) the BP-continue group (n = 30), (2) the switch-to-DMAb group (n = 30), or (3) the switch-to-TPTD group (n = 30), was conducted. Patients were retrospectively selected to minimize the difference of possible clinical backgrounds that may affect the joint destruction of RA. The primary endpoint was to clarify the change of the modified total Sharp score (mTSS) from baseline to 12 months. Results: After 12 months, the mean changes of the modified Sharp erosion score were significantly lower in the switch-to-DMAb group (0.2 ± 0.1; mean ± standard error) than in the switch-to-TPTD group (1.3 ± 0.5; P < 0.05), and mTSS was significantly lower in the switch-to-DMAb group (0.3 ± 0.2) than in the BP-continue group (1.0 ± 0.3; P < 0.05) and the switch-to-TPTD group (1.7 ± 0.6; P < 0.05). The logistic regression analysis showed that mTSS changes were significantly associated with the percent changes of TRACP-5b at 6 months (β = 0.30, 95% CI = 0.002–0.016; P < 0.01). Conclusions: Changes of systemic bone turnover induced by switching BPs to DMAb or TPTD may affect not only systemic bone mass, but also local joint destruction, and its clinical relevance should be considered comprehensively.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00198-018-4492-yEbina K., Hirao M., Hashimoto J., et al. Impact of switching oral bisphosphonates to denosumab or daily teriparatide on the progression of radiographic joint destruction in patients with biologic-naïve rheumatoid arthritis. Osteoporosis International 29, 1627 (2018); https://doi.org/10.1007/s00198-018-4492-y

    Clinical and molecular implications of mosaicism in FMR1 full mutations

    Get PDF
    Expansions of more than 200 CGG repeats (full mutation) in the FMR1 gene give rise to fragile X syndrome (FXS) through a process that generally involves hypermethylation of the FMR1 promoter region and gene silencing, resulting in absence of expression of the encoded protein, FMRP. However, mosaicism with alleles differing in size and extent of methylation often exist within or between tissues of individuals with FXS. In the current work, CGG-repeat lengths and methylation status were assessed for eighteen individuals with FXS, including 13 mosaics, for which peripheral blood cells (PBMCs) and primary fibroblast cells were available. Our results show that for both PBMCs and fibroblasts, FMR1 mRNA and FMRP expression are directly correlated with the percent of methylation of the FMR1 allele. In addition, Full Scale IQ (FSIQ) scores were inversely correlated with the percent methylation and positively correlated with higher FMRP expression. These latter results point toward a positive impact on cognition for full mutation, methylation mosaics with lower methylation compared to individuals with fully methylated, full mutation alleles. However, we did not observe a significant reduction in the number of seizures, nor in the severity of hyperactivity or autism spectrum disorder, among individuals with mosaic genotypes in the presentation of FXS.These observations suggest that low, but non-zero expression of FMRP may be sufficient to positively impact cognitive function in individuals with FXS, with methylation mosaicism (lowered methylation fraction) contributing to a more positive clinical outcome
    • …
    corecore