5,336 research outputs found
Symbol Emergence in Robotics: A Survey
Humans can learn the use of language through physical interaction with their
environment and semiotic communication with other people. It is very important
to obtain a computational understanding of how humans can form a symbol system
and obtain semiotic skills through their autonomous mental development.
Recently, many studies have been conducted on the construction of robotic
systems and machine-learning methods that can learn the use of language through
embodied multimodal interaction with their environment and other systems.
Understanding human social interactions and developing a robot that can
smoothly communicate with human users in the long term, requires an
understanding of the dynamics of symbol systems and is crucially important. The
embodied cognition and social interaction of participants gradually change a
symbol system in a constructive manner. In this paper, we introduce a field of
research called symbol emergence in robotics (SER). SER is a constructive
approach towards an emergent symbol system. The emergent symbol system is
socially self-organized through both semiotic communications and physical
interactions with autonomous cognitive developmental agents, i.e., humans and
developmental robots. Specifically, we describe some state-of-art research
topics concerning SER, e.g., multimodal categorization, word discovery, and a
double articulation analysis, that enable a robot to obtain words and their
embodied meanings from raw sensory--motor information, including visual
information, haptic information, auditory information, and acoustic speech
signals, in a totally unsupervised manner. Finally, we suggest future
directions of research in SER.Comment: submitted to Advanced Robotic
SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model
To realize human-like robot intelligence, a large-scale cognitive
architecture is required for robots to understand the environment through a
variety of sensors with which they are equipped. In this paper, we propose a
novel framework named Serket that enables the construction of a large-scale
generative model and its inference easily by connecting sub-modules to allow
the robots to acquire various capabilities through interaction with their
environments and others. We consider that large-scale cognitive models can be
constructed by connecting smaller fundamental models hierarchically while
maintaining their programmatic independence. Moreover, connected modules are
dependent on each other, and parameters are required to be optimized as a
whole. Conventionally, the equations for parameter estimation have to be
derived and implemented depending on the models. However, it becomes harder to
derive and implement those of a larger scale model. To solve these problems, in
this paper, we propose a method for parameter estimation by communicating the
minimal parameters between various modules while maintaining their programmatic
independence. Therefore, Serket makes it easy to construct large-scale models
and estimate their parameters via the connection of modules. Experimental
results demonstrated that the model can be constructed by connecting modules,
the parameters can be optimized as a whole, and they are comparable with the
original models that we have proposed
Multimodal Hierarchical Dirichlet Process-based Active Perception
In this paper, we propose an active perception method for recognizing object
categories based on the multimodal hierarchical Dirichlet process (MHDP). The
MHDP enables a robot to form object categories using multimodal information,
e.g., visual, auditory, and haptic information, which can be observed by
performing actions on an object. However, performing many actions on a target
object requires a long time. In a real-time scenario, i.e., when the time is
limited, the robot has to determine the set of actions that is most effective
for recognizing a target object. We propose an MHDP-based active perception
method that uses the information gain (IG) maximization criterion and lazy
greedy algorithm. We show that the IG maximization criterion is optimal in the
sense that the criterion is equivalent to a minimization of the expected
Kullback--Leibler divergence between a final recognition state and the
recognition state after the next set of actions. However, a straightforward
calculation of IG is practically impossible. Therefore, we derive an efficient
Monte Carlo approximation method for IG by making use of a property of the
MHDP. We also show that the IG has submodular and non-decreasing properties as
a set function because of the structure of the graphical model of the MHDP.
Therefore, the IG maximization problem is reduced to a submodular maximization
problem. This means that greedy and lazy greedy algorithms are effective and
have a theoretical justification for their performance. We conducted an
experiment using an upper-torso humanoid robot and a second one using synthetic
data. The experimental results show that the method enables the robot to select
a set of actions that allow it to recognize target objects quickly and
accurately. The results support our theoretical outcomes.Comment: submitte
Nonparametric Bayesian Double Articulation Analyzer for Direct Language Acquisition from Continuous Speech Signals
Human infants can discover words directly from unsegmented speech signals
without any explicitly labeled data. In this paper, we develop a novel machine
learning method called nonparametric Bayesian double articulation analyzer
(NPB-DAA) that can directly acquire language and acoustic models from observed
continuous speech signals. For this purpose, we propose an integrative
generative model that combines a language model and an acoustic model into a
single generative model called the "hierarchical Dirichlet process hidden
language model" (HDP-HLM). The HDP-HLM is obtained by extending the
hierarchical Dirichlet process hidden semi-Markov model (HDP-HSMM) proposed by
Johnson et al. An inference procedure for the HDP-HLM is derived using the
blocked Gibbs sampler originally proposed for the HDP-HSMM. This procedure
enables the simultaneous and direct inference of language and acoustic models
from continuous speech signals. Based on the HDP-HLM and its inference
procedure, we developed a novel double articulation analyzer. By assuming
HDP-HLM as a generative model of observed time series data, and by inferring
latent variables of the model, the method can analyze latent double
articulation structure, i.e., hierarchically organized latent words and
phonemes, of the data in an unsupervised manner. The novel unsupervised double
articulation analyzer is called NPB-DAA.
The NPB-DAA can automatically estimate double articulation structure embedded
in speech signals. We also carried out two evaluation experiments using
synthetic data and actual human continuous speech signals representing Japanese
vowel sequences. In the word acquisition and phoneme categorization tasks, the
NPB-DAA outperformed a conventional double articulation analyzer (DAA) and
baseline automatic speech recognition system whose acoustic model was trained
in a supervised manner.Comment: 15 pages, 7 figures, Draft submitted to IEEE Transactions on
Autonomous Mental Development (TAMD
- …