1,010 research outputs found
Avalanche Dynamics in Wet Granular Materials
We have studied the dynamics of avalanching wet granular media in a rotating
drum apparatus. Quantitative measurements of the flow velocity and the granular
flux during avalanches allow us to characterize novel avalanche types unique to
wet media. We also explore the details of viscoplastic flow (observed at the
highest liquid contents) in which there are lasting contacts during flow,
leading to coherence across the entire sample. This coherence leads to a
velocity independent flow depth at high rotation rates and novel robust pattern
formation in the granular surface.Comment: 5 pages, 3 figures in color, REVTeX4, for smaller pdfs see
http://angel.elte.hu/~tegzes/condmat.htm
Observation of Plasma Focusing of a 28.5 GeV Positron Beam
The observation of plasma focusing of a 28.5 GeV positron beam is reported.
The plasma was formed by ionizing a nitrogen jet only 3 mm thick. Simultaneous
focusing in both transverse dimensions was observed with effective focusing
strengths of order Tesla per micron. The minimum area of the beam spot was
reduced by a factor of 2.0 +/- 0.3 by the plasma. The longitudinal beam
envelope was measured and compared with numerical calculations
Results on Plasma Focusing of High Energy Density Electron and Positron Beams
We present results from the SLAC E-150 experiment on plasma focusing of high
energy density electron and, for the first time, positron beams. We also
discuss measurements on plasma lens-induced synchrotron radiation, longitudinal
dynamics of plasma focusing, and laser- and beam-plasma interactions.Comment: LINAC 2000 paper No. THC13, Monterey, CA. Aug.21-25,2000, 3 pages, 2
figure
Electroactive biofilms: new means for electrochemistry
This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on
electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with
stainless steel ultra-microelectrodes under constant potential electrolysis at )0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In
most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to
biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy
showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative
correlation between biofilm morphology and current was established. In compost, the oxidation process was
investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was
demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few
days, up to 60 mA m)2. Adding 10 mM acetate to the compost amplified the current density to 145 mA m)2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and
seawaters that have been predominantly investigated until now, may be able to produce electrochemically active
biofilm
Retelling racialized violence, remaking white innocence: the politics of interlocking oppressions in transgender day of remembrance
Transgender Day of Remembrance has become a significant political event among those resisting violence against gender-variant persons. Commemorated in more than 250 locations worldwide, this day honors individuals who were killed due to anti-transgender hatred or prejudice. However, by focusing on transphobia as the definitive cause of violence, this ritual potentially obscures the ways in which hierarchies of race, class, and sexuality constitute such acts. Taking the Transgender Day of Remembrance/Remembering Our Dead project as a case study for considering the politics of memorialization, as well as tracing the narrative history of the Fred F. C. Martinez murder case in Colorado, the author argues that deracialized accounts of violence produce seemingly innocent White witnesses who can consume these spectacles of domination without confronting their own complicity in such acts. The author suggests that remembrance practices require critical rethinking if we are to confront violence in more effective ways. Description from publisher's site: http://caliber.ucpress.net/doi/abs/10.1525/srsp.2008.5.1.2
Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades
We present the first direct experimental evidence for the charge excess in
high energy particle showers predicted nearly 40 years ago by Askaryan. We
directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at
the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target,
producing electromagnetic showers several meters long. A series of antennas
spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio
frequency pulses produced whenever a shower was present. The measured electric
field strengths are consistent with a completely coherent radiation process.
The pulses show 100% linear polarization, consistent with the expectations of
Cherenkov radiation. The field strength versus depth closely follows the
expected particle number density profile of the cascade, consistent with
emission from excess charge distributed along the shower. These measurements
therefore provide strong support for experiments designed to detect high energy
cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let
Observation of Coherent Elastic Neutrino-Nucleus Scattering
The coherent elastic scattering of neutrinos off nuclei has eluded detection
for four decades, even though its predicted cross-section is the largest by far
of all low-energy neutrino couplings. This mode of interaction provides new
opportunities to study neutrino properties, and leads to a miniaturization of
detector size, with potential technological applications. We observe this
process at a 6.7-sigma confidence level, using a low-background, 14.6-kg
CsI[Na] scintillator exposed to the neutrino emissions from the Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic
signatures in energy and time, predicted by the Standard Model for this
process, are observed in high signal-to-background conditions. Improved
constraints on non-standard neutrino interactions with quarks are derived from
this initial dataset
Deep Neural Networks for Energy and Position Reconstruction in EXO-200
We apply deep neural networks (DNN) to data from the EXO-200 experiment. In
the studied cases, the DNN is able to reconstruct the relevant parameters -
total energy and position - directly from raw digitized waveforms, with minimal
exceptions. For the first time, the developed algorithms are evaluated on real
detector calibration data. The accuracy of reconstruction either reaches or
exceeds what was achieved by the conventional approaches developed by EXO-200
over the course of the experiment. Most existing DNN approaches to event
reconstruction and classification in particle physics are trained on Monte
Carlo simulated events. Such algorithms are inherently limited by the accuracy
of the simulation. We describe a unique approach that, in an experiment such as
EXO-200, allows to successfully perform certain reconstruction and analysis
tasks by training the network on waveforms from experimental data, either
reducing or eliminating the reliance on the Monte Carlo.Comment: Accepted version. 33 pages, 28 figure
- …