4,210 research outputs found
High temperature thermoelectric efficiency in Ba8Ga16Ge30
The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3
Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSbTe
Substitution of Sb in FeSb by less than 0.5% of Te induces a transition
from a correlated semiconductor to an unconventional metal with large effective
charge carrier mass . Spanning the entire range of the semiconductor-metal
crossover, we observed an almost constant enhancement of the measured
thermopower compared to that estimated by the classical theory of electron
diffusion. Using the latter for a quantitative description one has to employ an
enhancement factor of 10-30. Our observations point to the importance of
electron-electron correlations in the thermal transport of FeSb, and
suggest a route to design thermoelectric materials for cryogenic applications.Comment: 3 pages, 3 figures, accepted for publication in Appl. Phys. Lett.
(2011
The Partisan Politics of New Social Risks in Advanced Postindustrial Democracies: Social Protection for Labor Market Outsiders
Advanced postindustrialization generates numerous challenges for the European social model. Central among these challenges is declining income, unstable employment, and inadequate training of semi- and unskilled workers. In this chapter, I assess the partisan basis of support for social policies that address the needs of these marginalized workers. I specifically consider the impacts of postindustrial cleavages among core constituencies of social democratic parties on the capacity of these parties to pursue inclusive social policies. I argue – and find support for in empirical analyses – that encompassing labor organization is the most important factor in strengthening the ability of left parties to build successful coalitions in support of outsider-friendly policies. I go beyond existing work on the topic by considering the full array of postindustrial cleavages facing left parties, by more fully elaborating why encompassing labor organization is crucial, and by considering a more complete set of measures of outsider policies than extant work. I compare my arguments and findings to important new work that stresses coalition building and partisan politics but minimizes the role of class organization
Highly Dispersive Electron Relaxation and Colossal Thermoelectricity in the Correlated Semiconductor FeSb
We show that the colossal thermoelectric power, , observed in the
correlated semiconductor FeSb below 30\,K is accompanied by a huge Nernst
coefficient and magnetoresistance MR. Markedly, the latter two
quantities are enhanced in a strikingly similar manner. While in the same
temperature range, of the reference compound FeAs, which has a
seven-times larger energy gap, amounts to nearly half of that of FeSb, its
and MR are intrinsically different to FeSb: they are smaller
by two orders of magnitude and have no common features. With the charge
transport of FeAs successfully captured by the density functional theory,
we emphasize a significantly dispersive electron-relaxation time
due to electron-electron correlations to be at the heart of
the peculiar thermoelectricity and magnetoresistance of FeSb.Comment: 8 pages, 5 figure
Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment
Using angle-resolved photoelectron spectroscopy and ab-initio GW
calculations, we unambiguously show that the widely investigated
three-dimensional topological insulator Bi2Se3 has a direct band gap at the
Gamma point. Experimentally, this is shown by a three-dimensional band mapping
in large fractions of the Brillouin zone. Theoretically, we demonstrate that
the valence band maximum is located at the Brillouin center only if many-body
effects are included in the calculation. Otherwise, it is found in a
high-symmetry mirror plane away from the zone center.Comment: 8 pages, 4 figure
Intra- and Interband Electron Scattering in the Complex Hybrid Topological Insulator Bismuth Bilayer on BiSe
The band structure, intra- and interband scattering processes of the
electrons at the surface of a bismuth-bilayer on BiSe have been
experimentally investigated by low-temperature Fourier-transform scanning
tunneling spectroscopy. The observed complex quasiparticle interference
patterns are compared to a simulation based on the spin-dependent joint density
of states approach using the surface-localized spectral function calculated
from first principles as the only input. Thereby, the origin of the
quasiparticle interferences can be traced back to intraband scattering in the
bismuth bilayer valence band and BiSe conduction band, and to interband
scattering between the two-dimensional topological state and the
bismuth-bilayer valence band. The investigation reveals that the bilayer band
gap, which is predicted to host one-dimensional topological states at the edges
of the bilayer, is pushed several hundred milli-electronvolts above the Fermi
level. This result is rationalized by an electron transfer from the bilayer to
BiSe which also leads to a two-dimensional electron state in the
BiSe conduction band with a strong Rashba spin-splitting, coexisting
with the topological state and bilayer valence band.Comment: 11 pages, 5 figure
A Helium-Surface Interaction Potential of BiTe(111) from Ultrahigh-Resolution Spin-Echo Measurements
We have determined an atom-surface interaction potential for the
HeBiTe(111) system by analysing ultrahigh resolution measurements of
selective adsorption resonances. The experimental measurements were obtained
using He spin-echo spectrometry. Following an initial free-particle model
analysis, we use elastic close-coupling calculations to obtain a
three-dimensional potential. The three-dimensional potential is then further
refined based on the experimental data set, giving rise to an optimised
potential which fully reproduces the experimental data. Based on this analysis,
the HeBiTe(111) interaction potential can be described by a
corrugated Morse potential with a well depth , a
stiffness and a surface electronic
corrugation of % of the lattice constant. The improved
uncertainties of the atom-surface interaction potential should also enable the
use in inelastic close-coupled calculations in order to eventually study the
temperature dependence and the line width of selective adsorption resonances
- …