379 research outputs found

    Exciton spin decay modified by strong electron-hole exchange interaction

    Full text link
    We study exciton spin decay in the regime of strong electron-hole exchange interaction. In this regime the electron spin precession is restricted within a sector formed by the external magnetic field and the effective exchange fields triggered by random spin flips of the hole. Using Hanle effect measurements, we demonstrate that this mechanism dominates our experiments in CdTe/(Cd,Mg)Te quantum wells. The calculations provide a consistent description of the experimental results, which is supported by independent measurements of the parameters entering the model.Comment: 5 pages, 3 figure

    Spin orientation of a two-dimensional electron gas by a high-frequency electric field

    Full text link
    Coupling of spin states and space motion of conduction electrons due to spin-orbit interaction opens up possibilities for manipulation of the electron spins by electrical means. It is shown here that spin orientation of a two-dimensional electron gas can be achieved by excitation of the carriers with a linearly polarized high-frequency electric field. In (001)-grown quantum well structures excitation with in-plane ac electric field induces orientation of the electron spins along the quantum well normal, with the spin sign and the magnitude depending on the field polarization.Comment: 5 pages, 1 figur

    Optical Spin Orientation in Strained Superlattices

    Full text link
    Optical orientation in the strained semiconductor superlattices is investigated theoretically. The dependence of the features in spin-polarization spectra on the structure parameters is clarified. The value of polarization in the first polarization maximum in the SL structures is shown to grow with the splitting between the hh- and lh- states of the valence band, the joint strain and confinement effects on the hh1- lh1 splitting being strongly influenced by the tunneling in the barriers. In strained structures with high barriers for the holes initial polarization can exceed 95 %. Calculated polarization spectra are close to the experimental spectra of polarized electron emission.Comment: 20 pages, 8 figure

    Polariton Dispersion Law in Periodic Bragg and Near-Bragg Multiple Quantum Well Structures

    Full text link
    The structure of polariton spectrum is analyzed for periodic multiple quantum well structures with periods at or close to Bragg resonance condition at the wavelength of the exciton resonance. The results obtained used to discuss recent reflection and luminescent experiments by M. H\"{u}bner et al [Phys. Rev. Lett. {\bf 83}, 2841 (1999)] carried out with long multiple quantum well structures. It is argued that the discussion of quantum well structures with large number of wells is more appropriate in terms of normal modes of infinite periodic structures rather then in terms of super- and sub- radiant modes.Comment: replaced with a new version, an error in one of the equations is correcte

    Spin coherence of a two-dimensional electron gas induced by resonant excitation of trions and excitons in CdTe/(Cd,Mg)Te quantum wells

    Full text link
    The mechanisms for generation of long-lived spin coherence in a two-dimensional electron gas (2DEG) have been studied experimentally by means of a picosecond pump-probe Kerr rotation technique. CdTe/(Cd,Mg)Te quantum wells with a diluted 2DEG were investigated. The strong Coulomb interaction between electrons and holes, which results in large binding energies of neutral excitons and negatively charged excitons (trions), allows one to address selectively the exciton or trion states by resonant optical excitation. Different scenarios of spin coherence generation were analyzed theoretically, among them the direct trion photocreation, the formation of trions from photogenerated excitons and the electron-exciton exchange scattering. Good agreement between experiment and theory is found.Comment: 18 pages, 20 figure

    Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells

    Full text link
    Frequency dependencies of optical characteristics (reflection, transmission and absorption of light) of a quantum well are investigated in a vicinity of interband resonant transitions in a case of two closely located excited energy levels. A wide quantum well in a quantizing magnetic field directed normally to the quantum-well plane, and monochromatic stimulating light are considered. Distinctions between refraction coefficients of barriers and quantum well, and a spatial dispersion of the light wave are taken into account. It is shown that at large radiative lifetimes of excited states in comparison with nonradiative lifetimes, the frequency dependence of the light reflection coefficient in the vicinity of resonant interband transitions is defined basically by a curve, similar to the curve of the anomalous dispersion of the refraction coefficient. The contribution of this curve weakens at alignment of radiative and nonradiative times, it is practically imperceptible at opposite ratio of lifetimes . It is shown also that the frequency dependencies similar to the anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure

    Non-exponential spin relaxation in magnetic field in quantum wells with random spin-orbit coupling

    Full text link
    We investigate the spin dynamics of electrons in quantum wells where the Rashba type of spin-orbit coupling is present in the form of random nanosize domains. We study the effect of magnetic field on the spin relaxation in these systems and show that the spatial randomness of spin-orbit coupling limits the minimum relaxation rate and leads to a Gaussian time-decay of spin polarization due to memory effects. In this case the relaxation becomes faster with increase of the magnetic field in contrast to the well known magnetic field suppression of spin relaxation.Comment: published version, minor change

    Magneto-gyrotropic effects in semiconductor quantum wells (review)

    Full text link
    Magneto-gyrotropic photogalvanic effects in quantum wells are reviewed. We discuss experimental data, results of phenomenological analysis and microscopic models of these effects. The current flow is driven by spin-dependent scattering in low-dimensional structures gyrotropic media resulted in asymmetry of photoexcitation and relaxation processes. Several applications of the effects are also considered.Comment: 28 pages, 13 figure

    Spin Hall Effect

    Get PDF
    The intrinsic spin Hall effect in semiconductors has developed to a remarkably lively and rapidly growing branch of research in the field of semiconductor spintronics. In this article we give a pedagogical overview on both theoretical and experimental accomplishments and challenges. Emphasis is put on the the description of the intrinsic mechanisms of spin Hall transport in III-V zinc-blende semiconductors, and on the effects of dissipation.Comment: 22 pages, minor adjustments, version as publishe

    Spin noise spectroscopy of a single-quantum-well microcavity

    Full text link
    We report on the first experimental observation of spin noise in a single semiconductor quantum well embedded into a microcavity. The great cavity-enhanced sensitivity to fluctuations of optical anisotropy has allowed us to measure the Kerr rotation and ellipticity noise spectra in the strong coupling regime. The spin noise spectra clearly show two resonant features: a conventional magneto-resonant component shifting towards higher frequencies with magnetic field and an unusual "nonmagnetic" component centered at zero frequency and getting suppressed with increasing magnetic field. We attribute the first of them to the Larmor precession of free electron spins, while the second one being presumably due to hyperfine electron-nuclei spin interactions.Comment: 5 pages, 6 figures + supplement (4 pages, 1 figure
    • …
    corecore