423 research outputs found

    Resonant Fibonacci Quantum Well Structures

    Full text link
    We propose a resonant one-dimensional quasicrystal, namely, a multiple quantum well (MQW) structure satisfying the Fibonacci-chain rule with the golden ratio between the long and short inter-well distances. The resonant Bragg condition is generalized from the periodic to Fibonacci MQWs. A dispersion equation for exciton-polaritons is derived in the two-wave approximation, the effective allowed and forbidden bands are found. The reflection spectra from the proposed structures are calculated as a function of the well number and detuning from the Bragg condition.Comment: 5 pages, 3 figures, submitted to Phys. Rev.

    Pure spin photocurrents in low-dimensional structures

    Full text link
    As is well known the absorption of circularly polarized light in semiconductors results in optical orientation of electron spins and helicity-dependent electric photocurrent, and the absorption of linearly polarized light is accompanied by optical alignment of electron momenta. Here we show that the absorption of unpolarized light leads to generation of a pure spin current, although both the average electron spin and electric current vanish. We demonstrate this for direct interband and intersubband as well as indirect intraband (Drude-like) optical transitions in semiconductor quantum wells (QWs).Comment: 4 pages, 3 figure

    Optical Spin Orientation in Strained Superlattices

    Full text link
    Optical orientation in the strained semiconductor superlattices is investigated theoretically. The dependence of the features in spin-polarization spectra on the structure parameters is clarified. The value of polarization in the first polarization maximum in the SL structures is shown to grow with the splitting between the hh- and lh- states of the valence band, the joint strain and confinement effects on the hh1- lh1 splitting being strongly influenced by the tunneling in the barriers. In strained structures with high barriers for the holes initial polarization can exceed 95 %. Calculated polarization spectra are close to the experimental spectra of polarized electron emission.Comment: 20 pages, 8 figure

    Wood anomalies in resonant photonic quasicrystals

    Full text link
    A theory of light diffraction from planar quasicrystalline lattice with resonant scatterers is presented. Rich structure, absent in the periodic case, is found in specular reflection spectra, and interpreted as a specific kind of Wood anomalies, characteristic for quasicrystals. The theory is applied to semiconductor quantum dots arranged in Penrose tiling.Comment: 6 pages, 3 figure

    Magneto-Gyrotropic Photogalvanic Effects in Semiconductor Quantum Wells

    Get PDF
    We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis evidences that the observed photocurrents are spin-dependent and related to the gyrotropy of the QWs. Microscopic models for the photogalvanic effects in QWs based on asymmetry of photoexcitation and relaxation processes are proposed. In most of the investigated structures the observed magneto-induced photocurrents are caused by spin-dependent relaxation of non-equilibrium carriers

    Non-Markovian spin relaxation in two-dimensional electron gas

    Full text link
    We analyze by Monte-Carlo simulations and analytically spin dynamics of two-dimensional electron gas (2DEG) interacting with short-range scatterers in nonquantizing magnetic fields. It is shown that the spin dynamics is non-Markovian with the exponential spin relaxation followed by the oscillating tail due to the electrons residing on the closed trajectories. The tail relaxes on a long time scale due to an additional smooth random potential and inelastic processes. The developed analytical theory and Monte-Carlo simulations are in the quantitative agreement with each other.Comment: 6 pages, 3 figure

    Spin orientation by electric current in (110) quantum wells

    Full text link
    We develop a theory of spin orientation by electric current in (110)-grown semiconductor quantum wells. The controversy in the factor of two from two existed approaches is resolved by pointing out the importance of energy relaxation in this problem. The limiting cases of fast and slow energy relaxation relative to spin relaxation are considered for asymmetric (110) quantum wells. For symmetricly-doped structures the effect of spin orientation is shown to exist due to spatial fluctuations of the Rashba spin-orbit splitting. We demonstrate that the spin orientation depends strongly on the correlation length of these fluctuations as well as on the ratio of the energy and spin relaxation rates. The time-resolved kinetics of spin polarization by electric current is also governed by the correlation length being not purely exponential at slow energy relaxation. Electrical spin orientation in two-dimensional topological insulators is calculated and compared with the spin polarization induced by the magnetic field.Comment: 8 pages, 2 figure
    • …
    corecore