36 research outputs found

    Expanding the Deployment Envelope of Behavior Prediction via Adaptive Meta-Learning

    Full text link
    Learning-based behavior prediction methods are increasingly being deployed in real-world autonomous systems, e.g., in fleets of self-driving vehicles, which are beginning to commercially operate in major cities across the world. Despite their advancements, however, the vast majority of prediction systems are specialized to a set of well-explored geographic regions or operational design domains, complicating deployment to additional cities, countries, or continents. Towards this end, we present a novel method for efficiently adapting behavior prediction models to new environments. Our approach leverages recent advances in meta-learning, specifically Bayesian regression, to augment existing behavior prediction models with an adaptive layer that enables efficient domain transfer via offline fine-tuning, online adaptation, or both. Experiments across multiple real-world datasets demonstrate that our method can efficiently adapt to a variety of unseen environments.Comment: 12 pages, 13 figures, 2 tables. ICRA 202

    DiffStack: A Differentiable and Modular Control Stack for Autonomous Vehicles

    Full text link
    Autonomous vehicle (AV) stacks are typically built in a modular fashion, with explicit components performing detection, tracking, prediction, planning, control, etc. While modularity improves reusability, interpretability, and generalizability, it also suffers from compounding errors, information bottlenecks, and integration challenges. To overcome these challenges, a prominent approach is to convert the AV stack into an end-to-end neural network and train it with data. While such approaches have achieved impressive results, they typically lack interpretability and reusability, and they eschew principled analytical components, such as planning and control, in favor of deep neural networks. To enable the joint optimization of AV stacks while retaining modularity, we present DiffStack, a differentiable and modular stack for prediction, planning, and control. Crucially, our model-based planning and control algorithms leverage recent advancements in differentiable optimization to produce gradients, enabling optimization of upstream components, such as prediction, via backpropagation through planning and control. Our results on the nuScenes dataset indicate that end-to-end training with DiffStack yields substantial improvements in open-loop and closed-loop planning metrics by, e.g., learning to make fewer prediction errors that would affect planning. Beyond these immediate benefits, DiffStack opens up new opportunities for fully data-driven yet modular and interpretable AV architectures. Project website: https://sites.google.com/view/diffstackComment: CoRL 2022 camera read

    Reinforcement Learning with Human Feedback for Realistic Traffic Simulation

    Full text link
    In light of the challenges and costs of real-world testing, autonomous vehicle developers often rely on testing in simulation for the creation of reliable systems. A key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge, an aspect that has proven challenging due to the need to balance realism and diversity. This works aims to address this by developing a framework that employs reinforcement learning with human preference (RLHF) to enhance the realism of existing traffic models. This study also identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models. To tackle these issues, we propose using human feedback for alignment and employ RLHF due to its sample efficiency. We also introduce the first dataset for realism alignment in traffic modeling to support such research. Our framework, named TrafficRLHF, demonstrates its proficiency in generating realistic traffic scenarios that are well-aligned with human preferences, as corroborated by comprehensive evaluations on the nuScenes dataset.Comment: 9 pages, 4 figure
    corecore