1,610 research outputs found

    The usage of 3D printing in the analysis of the product design: Case: Electronic enclosure of compact pressure transmitter

    Get PDF
    Aditivna proizvodnja uključuje izradu proizvoda složene geometrije u relativno malim količinama, kao i izradu alata i kalupa za masovnu proizvodnju. Aditivnom proizvodnjom realizuju se modeli prema digitalnom prikazu, a primena je ogromna u različitim industrijskim sektorima. U poređenju sa tradicionalnom proizvodnjom, glavni parametri u odabiru aditivne tehnologije su: ušteda energije, smanjenje otpada, smanjenje upotrebe većeg broja alata, kao i optimizacija dizajna. Aditivna proizvodnja ili tehnologija 3D štampe rade na principu dodavanja materijala u slojevima, tj. model se formira od slojeva rastopljenog materijala koji se odmah hladi i očvršćava. 3D štampa omogućava čestu i jednostavnu modifikaciju modela na zahtev kupca, a pre ulaska modela u samu proizvodnju. Ovo čini komunikaciju na relaciji proizvođač-kupac dosta jednostavnom. Polazni materijal za izradu modela je polilaktična kiselina (PLA). To je ekološki termoplastični poliester koji se prirodno razgrađuje u prirodi. Na mehaničke karakteristike realizovanog modela od PLA značajno utiču različite tehnološke promenljive kao što su: prečnik brizgaljke, debljina definisanog sloja, procentualna vrednost ispune, veličina uzorka koji se puni, brzina punjenja i temperatura proizvodnje. Cilj ovog rada je da se prikaže postupak realizacije kutije elektronike za malogabaritni transmiter pritiska na 3D štampaču. Time se projektantu daje mogućnost da ispravi postojeće greške, modifikuje proizvod prema zahtevima krajnjih korisnika i na kraju daje polazna osnova za realizaciju prototipa novog proizvoda.Additive manufacturing involves manufacturing of products with complex geometry in relatively small quantities, as well as the tools and molds manufacturing for mass production. With additive manufacturing, digital models are being realized and implementation is huge in various industrial sectors. Compared to traditional manufacturing, the main parameters in the choice of additive technology are: energy savings, waste reduction, reduced use of more tools and optimization of design. Additive manufacturing or 3D printing technology works on the principle of adding material in layers, i.e. the model is formed from layers of molten material that is immediately cooled and solidified. 3D printing allows to work with customers to solve design problems before embarking on a launch production. The starting material for the model is polyactic acid (PLA). It is an eco-friendly thermoplastic polyester, that breaks down naturally. The mechanical characteristics of the realized PLA model are significantly influenced by various technological variables, such as following: nozzle diameter, thickness of defined layer, percentage of fill, sample size to be filled, filling rate and production temperature. The aim of this paper is to present the process of realization of an electronics enclosure for a compact pressure transmitter on a 3D printer. This gives the designer the possibility to correct existing errors, modify the product according to the wishes of the end users and finally provides a starting point for the prototype of new product

    The usage of 3D printing in the analysis of the product design: Case – Electronic enclosure of compact pressure transmitter

    Get PDF
    Aditivna proizvodnja uključuje izradu proizvoda složene geometrije u relativno malim količinama, kao i izradu alata i kalupa za masovnu proizvodnju. Aditivnom proizovnjom realizuju se modeli prema digitalnom prikazu, a primena je ogromna u različitim industrijskim sektorima. U poređenju sa tradicionalnom proizvodnjom, glavni parametri u odabiru aditivne tehnologije su: ušteda energije, smanjenje otpada, smanjenje upotrebe većeg broja alata, kao i optimizacija dizajna. Aditivna proizvodnja ili tehnologija 3D štampe rade na principu dodavanja materijala u slojevima, tj. model se formira od slojeva rastopljenog materijala koji se odmah hladi i očvršćava. 3D štampa omogućava čestu i jednostavnu modifikaciju modela na zahtev kupca, a pre ulaska modela u samu proizvodnju. Ovo čini komunikaciju na relaciji proizvođač-kupac dosta jednostavnom. Polazni materijal za izradu modela je polilaktična kiselina (PLA). To je ekološki termoplastični poliester koji se prirodno razgrađuje u prirodi. Na mehaničke karakteristike realizovanog modela od PLA značajno utiču različite tehnološke promenljive kao što su: prečnik brizgaljke, debljina definisanog sloja, procentualna vrednost ispune, veličina uzorka koji se puni, brzina punjenja i temperatura proizvodnje. Cilj ovog rada je da se prikaže postupak realizacije kutije elektronike za malogabaritni transmiter pritiska na 3D štampaču. Time se projektantu daje mogućnost da ispravi postojeće greške, modifikuje proizvod prema zahterima krajnjih korisnika i na kraju daje polazna osnova za realizaciju prototipa novog proizvoda.Additive manufacturing involves manufacturing of products with complex geometry in relatively small quantities, as well as the tools and molds manufacturing for mass production. With additive manufacturing, digital models are being realized and implementation is huge in various industrial sectors. Compared to traditional manufacturing, the main parameters in the choice of additive technology are: energy savings, waste reduction, reduced use of more tools and optimization of design. Additive manufacturing or 3D printing technology works on the principle of adding material in layers, i.e. the model is formed from layers of molten material that is immediately cooled and solidified. 3D printing allows to work with customers to solve design problems before embarking on a launch production. The starting material for the model is polyactic acid (PLA). It is an eco-friendly thermoplastic polyester, that breaks down naturally. The mechanical characteristics of the realized PLA model are significantly influenced by various technological variables, such as following: nozzle diameter, thickness of defined layer, percentage of fill, sample size to be filled, filling rate and production temperature. The aim of this paper is to present the process of realization of an electronics enclosure for a compact pressure transmitter on a 3D printer. This gives the designer the possibility to correct existing errors, modify the product according to the wishes of the end users and finally provides a starting point for the prototype of new product

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Search for lepton-flavor violating decays of the Higgs boson in the mu tau and e tau final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for lepton-flavor violating decays of the Higgs boson to mu t and et. The dataset corresponds to an integrated luminosity of 137 fb(-1) collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, B(H -> mu t) e tau) < 0.22(0.16)% at 95% confidence level.Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore