21,506 research outputs found

    The beryllium atom and beryllium positive ion in strong magnetic fields

    Get PDF
    The ground and a few excited states of the beryllium atom in external uniform magnetic fields are calculated by means of our 2D mesh Hartree-Fock method for field strengths ranging from zero up to 2.35*10^9T. With changing field strength the ground state of the Be atom undergoes three transitions involving four different electronic configurations which belong to three groups with different spin projections S_z=0,-1,-2. For weak fields the ground state configuration arises from the 1s^2 2s^2, S_z=0 configuration. With increasing field strength the ground state evolves into the two S_z=-1 configurations 1s^22s 2p_{-1} and 1s^2 2p_{-1}3d_{-2}, followed by the fully spin polarised S_z=-2 configuration 1s2p_{-1}3d_{-2}4f_{-3}. The latter configuration forms the ground state of the beryllium atom in the high field regime \gamma>4.567. The analogous calculations for the Be^+ ion provide the sequence of the three following ground state configurations: 1s^22s and 1s^22p_{-1} (S_z=-1/2) and 1s2p_{-1}3d_{-2} (S_z=-3/2).Comment: 15 pages, 7 figure

    Impurity center in a semiconductor quantum ring in the presence of a radial electric field

    Full text link
    The problem of an impurity electron in a quantum ring (QR) in the presence of a radially directed strong external electric field is investigated in detail. Both an analytical and a numerical approach to the problem are developed. The analytical investigation focuses on the regime of a strong wire-electric field compared to the electric field due to the impurity. An adiabatic and quasiclassical approximation is employed. The explicit dependencies of the binding energy of the impurity electron on the electric field strength, parameters of the QR and position of the impurity within the QR are obtained. Numerical calculations of the binding energy based on a finite-difference method in two and three dimensions are performed for arbitrary strengths of the electric field. It is shown that the binding energy of the impurity electron exhibits a maximum as a function of the radial position of the impurity that can be shifted arbitrarily by applying a corresponding wire-electric field. The maximal binding energy monotonically increases with increasing electric field strength. The inversion effect of the electric field is found to occur. An increase of the longitudinal displacement of the impurity typically leads to a decrease of the binding energy. Results for both low- and high-quantum rings are derived and discussed. Suggestions for an experimentally accessible set-up associated with the GaAs/GaAlAs QR are provided.Comment: 16 pages, 8 figure

    Exclusive diffractive electroproduction of dijets in collinear factorization

    Full text link
    Exclusive electroproduction of hard dijets can be described within the collinear factorization. This process has clear experimental signature and provides one with an interesting alternative venue to test QCD description of hard diffractive processes and extract information on generalized nucleon parton distributions. In this work we present detailed leading-order QCD calculations of the relevant cross sections, including longitudinal momentum fraction distribution of the dijets and their azimuthal angle dependence.Comment: 11 pages, 14 Postscript figures, uses revtex4.st

    Entropy Bounds, Holographic Principle and Uncertainty Relation

    Get PDF
    A simple derivation of the bound on entropy is given and the holographic principle is discussed. We estimate the number of quantum states inside space region on the base of uncertainty relation. The result is compared with the Bekenstein formula for entropy bound, which was initially derived from the generalized second law of thermodynamics for black holes. The holographic principle states that the entropy inside a region is bounded by the area of the boundary of that region. This principle can be called the kinematical holographic principle. We argue that it can be derived from the dynamical holographic principle which states that the dynamics of a system in a region should be described by a system which lives on the boundary of the region. This last principle can be valid in general relativity because the ADM hamiltonian reduces to the surface term.Comment: LaTeX, 8 pages, no figure

    Coulomb effects in a ballistic one-channel S-S-S device

    Full text link
    We develop a theory of Coulomb oscillations in superconducting devices in the limit of small charging energy EC≪ΔE_C \ll \Delta. We consider a small superconducting grain of finite capacity connected to two superconducting leads by nearly ballistic single-channel quantum point contacts. The temperature is supposed to be very low, so there are no single-particle excitations on the grain. Then the behavior of the system may be described as quantum mechanics of the superconducting phase on the island. The Josephson energy as a function of this phase has two minima which become degenerate at the phase difference on the leads equal to π\pi, the tunneling amplitude between them being controlled by the gate voltage at the grain. We find the Josephson current and its low-frequency fluctuations and predict their periodic dependence on the induced charge Qx=CVgQ_x=C V_g with period 2e2e.Comment: 11 pages, REVTeX, 10 figures, uses eps

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh
    • …
    corecore