5 research outputs found

    Antioxidants, radiation and mutation as revealed by sperm abnormality in barn swallows from Chernobyl

    No full text
    Reduced levels of antioxidants such as carotenoids and vitamins A and E can increase DNA damage caused by free radicals. Exposure to radiation has been proposed to reduce levels of antioxidants that are used for DNA repair and this reduction may be responsible for increased levels of mutation in radioactively contaminated areas. We test this hypothesis using field measures of antioxidants in blood, liver and eggs of the barn swallow Hirundo rustica while relating these to levels of mutation as reflected by the frequency of abnormal sperm. Antioxidant levels in blood, liver and eggs were reduced in Chernobyl, Ukraine, compared with an uncontaminated control area, and levels of antioxidants correlated negatively with levels of background radiation. The frequency of abnormal sperm was almost an order of magnitude higher in Chernobyl than in the control area and was negatively related to antioxidant levels in blood and liver. This is consistent with the hypothesis of a direct link between radiation and individual levels of antioxidants, suggesting that levels of mutation differ among individuals owing to individual differences in the abundance of antioxidants

    Birds prefer to breed in sites with low radioactivity in Chernobyl

    No full text
    Low-level radioactive contamination may affect choice of breeding site and life-history decisions if (i) radioactivity directly affects body condition or (ii) it affects resource abundance that then secondarily influences reproductive decisions. We tested the effects of radioactive contamination on nest-site choice and reproduction in a community of hole nesting birds by putting up nest boxes in areas differing in levels of background radiation. Great tit Parus major and pied flycatcher Ficedula hypoleuca significantly avoided nest boxes in heavily contaminated areas, with a stronger effect in flycatchers than in tits. These preferences could not be attributed to variation in habitat quality or resource abundance, as determined by analyses of habitat use and the relationship between radiation and life-history characters. Likewise, none of these effects could be attributed to individuals of a specific age breeding in the most contaminated areas. Laying date and clutch size were not significantly related to dose rate in either species. Hatching success was depressed by elevated radioactive contamination, interacting with habitat in the great tit and with laying date in the pied flycatcher. Interspecific differences in effects of radiation on nest-site choice suggest that species respond in a species-specific manner to radiation, perhaps related to differences in migratory habits. We suggest that individual body condition rather than secondary effects of radiation on resource abundance account for the effects on nest box use and hatching success

    Chernobyl Birds Have Smaller Brains

    No full text
    Background: Animals living in areas contaminated by radioactive material from Chernobyl suffer from increased oxidative stress and low levels of antioxidants. Therefore, normal development of the nervous system is jeopardized as reflected by high frequencies of developmental errors, reduced brain size and impaired cognitive abilities in humans. Alternatively, associations between psychological effects and radiation have been attributed to post-traumatic stress in humans. Methodology/Principal Finding: Here we used an extensive sample of 550 birds belonging to 48 species to test the prediction that even in the absence of post-traumatic stress, there is a negative association between relative brain size and level of background radiation. We found a negative association between brain size as reflected by external head volume and level of background radiation, independent of structural body size and body mass. The observed reduction in brain size in relation to background radiation amounted to 5 % across the range of almost a factor 5,000 in radiation level. Species differed significantly in reduction in brain size with increasing background radiation, and brain size was the only morphological character that showed a negative relationship with radiation. Brain size was significantly smaller in yearlings than in older individuals. Conclusions/Significance: Low dose radiation can have significant effects on normal brain development as reflected by brain size and therefore potentially cognitive ability. The fact that brain size was smaller in yearlings than in older individual
    corecore