2 research outputs found

    Velocity vector imaging to quantify left atrial function

    Get PDF
    The aim of our study was to assess the feasibility of a new image analysis, velocity vector imaging (VVI), in the assessment of left atrial volumes (LAV) and left atrial ejection fraction (LAEF). We retrospectively analysed 100 transthoracic echocardiographic findings in 71 men, and 29 women (mean age 57 ± 19.8 years). Two subgroups of patients were defined: (1) with left ventricular (LV) EF > 50%, and (2) LV EF < 50%. For the VVI method of indexed LAV assessment we used the apical four-chamber view. From the displacement of LA endocardial pixels time–volume curves were extracted which provided automatically data regarding indexed maximum LAV (LAVImax), indexed minimum LAV (LAVImin), and LAEF. LAVs and LAEF by 2-dimensional echocardiograhy (2DE) were measured by Simpson’s biplane disc summation method. Comparing LAVImax, LAVImin, and LAEF by VVI versus 2DE in the total study population, we found significant correlations: r = 0.94, P < 0.0001, r = 0.94, P < 0.0001, r = 0.79, P < 0.0001, respectively. In addition, LAVImax ≄ 40 ml/m2 was 94% sensitive and 72% specific, LAVImin ≄ 27 ml/m2 was 90% sensitive and 86% specific, and LAEF < 30% was 80% sensitive and 96% specific for the detection of LV systolic dysfunction. There were highly significant inverse associations of LAVImax and LAVImin to LVEF. LAEF was also significantly related to LV systolic function. When comparing the time required for VVI and 2DE measurements, VVI led to 62% reduction in the measurement time. In conclusion, VVI is a feasible method for the assessment of LAVs and LAEF. It provides close agreement with that measured by conventional 2DE Simpson’s biplane method with significant time saved
    corecore