2 research outputs found

    Mechanical properties of medium-temperature thermoelectric materials based on tin and lead tellurides

    No full text
    The strength and thermoelectric properties of PbTe and Sn0.9Pb0.1Te medium-temperature polycrystalline specimens with p and n conductivity types, respectively, have been studied. The specimens have been produced using extrusion and spark plasma sintering. The strength parameters of the materials were studied using uniaxial compression at 20 to 500 °C. The structure of the materials was studied using X-ray diffraction and electron microscopy. The electrical conductivity and the Seebeck coefficient were measured simultaneously using the four-probe and differential methods. The temperature conductivity and the specific heat capacity were measured using the laser flash and differential scanning calorimetry methods. The PbTe and Sn0.9Pb0.1Te materials produced using extrusion and spark plasma sintering prove to be single-phase and have homogeneous compositions. For comparable synthesis methods, the dislocation density in the Sn0.9Pb0.1Te specimens is by an order of magnitude lower than in the PbTe ones. Study of the mechanical properties of n and p conductivity type specimens over a wide temperature range from 20 to 500 °C has shown that their deformation is plastic and has no traces of brittle fracture. For these plastic materials, the strength criterion has been accepted to be the arbitrary yield stress corresponding to the stress at a 0.2% deformation. The 20 °C yield stress of PbTe and Sn0.9Pb0.1Te is far higher for the specimens produced by extrusion. For all the test temperatures and synthesis methods the Sn0.9Pb0.1Te specimens have a higher strength than the PbTe ones. The PbTe and Sn0.9Pb0.1Te specimens produced by extrusion have better thermoelectric properties than the spark plasma sintered ones. The heat conductivity of the PbTe and Sn0.9Pb0.1Te specimens is almost the same regardless of compaction method

    Regularities of Structure Formation in 30 mm Rods of Thermoelectric Material during Hot Extrusion

    No full text
    In this study, Ingots of (Bi, Sb)2Te3 thermoelectric material with p-type conductivity have been obtained by hot extrusion. The main regularities of hot extrusion of 30 mm rods have been analyzed with the aid of a mathematical simulation on the basis of the joint use of elastic-plastic body approximations. The phase composition, texture and microstructure of the (Bi, Sb)2Te3 solid solutions have been studied using X-ray diffraction and scanning electron microscopy. The thermoelectric properties have been studied using the Harman method. We show that extrusion through a 30 mm diameter die produces a homogeneous strain. The extruded specimens exhibit a fine-grained structure and a clear axial texture in which the cleavage planes are parallel to the extrusion axis. The quantity of defects in the grains of the (Bi, Sb)2Te3 thermoelectric material decreases with an increase in the extrusion rate. An increase in the extrusion temperature leads to a decrease in the Seebeck coefficient and an increase in the electrical conductivity. The specimens extruded at 450 °C and a 0.5 mm/min extrusion rate have the highest thermoelectric figure of merit (Z = 3.2 × 10−3 K−1)
    corecore