5 research outputs found

    RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    Get PDF
    Abstract In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure

    Interband Photoconductivity of Metamorphic InAs/InGaAs Quantum Dots in the 1.3–1.55-μm Window

    No full text
    Abstract Photoelectric properties of the metamorphic InAs/In x Ga1 − x As quantum dot (QD) nanostructures were studied at room temperature, employing photoconductivity (PC) and photoluminescence spectroscopies, electrical measurements, and theoretical modeling. Four samples with different stoichiometry of In x Ga1 − x As cladding layer have been grown: indium content x was 0.15, 0.24, 0.28, and 0.31. InAs/In0.15Ga0.85As QD structure was found to be photosensitive in the telecom range at 1.3 μm. As x increases, a redshift was observed for all the samples, the structure with x = 0.31 was found to be sensitive near 1.55 μm, i.e., at the third telecommunication window. Simultaneously, only a slight decrease in the QD PC was recorded for increasing x, thus confirming a good photoresponse comparable with the one of In0.15Ga0.75As structures and of GaAs-based QD nanostructures. Also, the PC reduction correlate with the similar reduction of photoluminescence intensity. By simulating theoretically the quantum energy system and carrier localization in QDs, we gained insight into the PC mechanism and were able to suggest reasons for the photocurrent reduction, by associating them with peculiar behavior of defects in such a type of structures. All this implies that metamorphic QDs with a high x are valid structures for optoelectronic infrared light-sensitive devices

    Antireflection Enhancement by Composite Nanoporous Zeolite 3A–Carbon Thin Film

    No full text
    A straightforward and effective spin-coating technique at 120 °C was investigated for the deposition of a thin nanoporous layer with antireflection properties onto glass and indium tin oxide (ITO) coated glass. A mixture of zeolite 3A powder and high iodine value vegetable oil was deposited, creating a carbonic paste with embedded nanoporous grains. Experimental results evidenced excellent broadband antireflection over the visible-near-infrared wavelength range (450–850 nm), with a diffuse reflectance value of 1.67% and 1.79%. Structural and optical characteristics stabilized over time. The results are promising for the accessible and cost-effective fabrication of an antireflective surface for optoelectronic devices
    corecore