3 research outputs found

    Novel mutations in the toll like receptor genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection

    Get PDF
    Toll like receptors play a central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in TLR1, TLR2 and TLR4 genes may change the PAMP reorganization ability which causes altered responsiveness to the bacterial pathogens. A case control study, performed to assess the association between TLR gene mutations and susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP), revealed novel mutations (TLR1 - Ser150Gly and Val220Met; TLR2 - Phe670Leu) that hindered either PAMP recognition or further downstream TLR pathway activation. A cytokine expression experiments (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the challenged mutant and wild type moDCs (mocyte derived dendritic cells) confirmed the negative impact of these mutations and altered TLR downstream activation. Further In silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR motifs. The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1, LRR10) and 4th residue downstream to LRR domain (exta LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection

    Novel mutations in TLR genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.</p> <p>Results</p> <p>The study presents association between TLR gene mutations and increased susceptibility to <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further <it>in silico </it>analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.</p> <p>Conclusion</p> <p>The most critical positions that may alter the pathogen recognition ability of TLR were: the 9<sup>th </sup>amino acid position in LRR motif (TLR1–LRR10) and 4<sup>th </sup>residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.</p
    corecore