21 research outputs found

    Atomic Force Microscopy Study of the Temperature and Storage Duration Dependencies of Horseradish Peroxidase Oligomeric State

    No full text
    This paper presents an investigation of the temperature dependence of the oligomeric state of the horseradish peroxidase (HRP) enzyme on the temperature of its solution, and on the solution storage time, at the single-molecule level. Atomic force microscopy has been employed to determine how the temperature and the storage time of the HRP solution influence its aggregation upon direct adsorption of the enzyme from the solution onto bare mica substrates. In parallel, spectrophotometric measurements have been performed in order to estimate whether the HRP enzymatic activity changes over time upon the storage of the enzyme solution. The temperature dependence of the HRP oligomeric state has been studied within a broad (15–40 °C) temperature range. It has been demonstrated that the storage of the HRP solution for 14 days does not have any considerable effect on the oligomeric state of the enzyme, neither does it affect its activity. At longer storage times, AFM has allowed us to reveal a tendency of HRP to oligomerization during the storage of its buffered solution, while the enzymatic activity remains virtually unchanged even after a 1-month-long storage. By AFM, it has been revealed that after the incubation of a mica substrate in the HRP solution at various temperatures, the content of the mica-adsorbed oligomers increases insignificantly owing to a high-temperature stability of the enzyme

    AFM Study of the Influence of Glycerol Flow on Horseradish Peroxidase near the in/out Linear Sections of a Coil

    No full text
    Flow-based coiled systems, through which a heat transfer fluid (such as glycerol) is pumped, are widely used for thermal stabilization of bioreactors and biosensor cuvettes and cells. Previously, using horseradish peroxidase (HRP) as a model protein, we have demonstrated that the incubation of a protein solution in a flow-based system over coiled pipe with flowing glycerol leads to a change in the adsorption properties of the protein macromolecules. Herein, we have studied the effect of the glycerol flow on the properties of HRP, the solution of which was placed differently: i.e., near either the inflow or the outflow linear sections of the pipe, while the coiled section of the pipe was shielded with a grounded metallic cover. Atomic force microscopy (AFM) has been employed in order to visualize the HRP protein macromolecules adsorbed from its solution onto the mica substrate surface. The quantity of adsorbed protein was estimated based on the AFM data. The enzymatic activity of HRP was estimated by spectrophotometry. We demonstrate that a change in the properties of HRP enzyme was observed after the incubation of its solution near the inflow/outflow linear sections of the pipe with flowing glycerol. Namely, after the incubation of HRP solution near the inflow section, a decrease in the protein adsorption onto mica was observed, but its enzymatic activity remained unchanged in comparison to the control sample. In another case, when the HRP solution was incubated near the outflow section, an increased protein adsorption was observed, while the enzyme exhibited considerably lower activity

    The Use of Excess Electric Charge for Highly Sensitive Protein Detection: Proof of Concept

    No full text
    In highly sensitive bioanalytical systems intended for the detection of protein biomarkers at low and ultra-low concentrations, the efficiency of capturing target biomolecules from the volume of the analyzed sample onto the sensitive surface of the detection system is a crucial factor. Herein, the application of excess electric charge for the enhancement of transport of target biomolecules towards the sensitive surface of a detection system is considered. In our experiments, we demonstrate that an uncompensated electric charge is induced in droplets of protein-free water owing to the separation of charge in a part of the Kelvin dropper either with or without the use of an external electric field. The distribution of an excess electric charge within a protein-free water droplet is calculated. It is proposed that the efficiency of protein capturing onto the sensitive surface correlates with the sign and the amount of charge induced per every single protein biomolecule. The effect described herein can allow one to make the protein capturing controllable, enhancing the protein capturing in the desired (though small) sensitive area of a detector. This can be very useful in novel systems intended for highly sensitive detection of proteins at ultra-low (≀10−15 M) concentrations

    Detection of Hepatitis C Virus Core Protein in Serum Using Aptamer-Functionalized AFM Chips

    No full text
    In the present study, we demonstrate atomic force microscopy (AFM)-based detection of hepatitis C virus (HCV) particles in serum samples using a chip with aptamer-functionalized surface (apta-based AFM chip). The target particles, containing core antigen of HCV (HCVcoreAg protein), were biospecifically captured onto the chip surface from 1 mL of test solution containing 10 µL of serum collected from a hepatitis C patient. The registration of aptamer/antigen complexes on the chip surface was performed by AFM. The aptamers used in the present study were initially developed for therapeutic purposes; herein, these aptamers have been successfully utilized as probe molecules for HCVcoreAg detection in the presence of a complex protein matrix (human serum). The results obtained herein can be used for the development of detection systems that employ affine enrichment for protein detection

    “Silicon-On-Insulator”-Based Nanosensor for the Revelation of MicroRNA Markers of Autism

    No full text
    MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive “silicon-on-insulator”-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal–oxide–semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography. In our experiments described herein, we demonstrate the revelation of ASD-associated miRNAs in human plasma with the SOI-NS, whose sensor elements were sensitized with oligonucleotide probes. In order to determine the concentration sensitivity of the SOI-NS, experiments on the detection of synthetic DNA analogues of autism-associated miRNAs in purified buffer were performed. The lower limit of miRNA detection attained in our experiments amounted to 10−17 M

    Effect of Spherical Elements of Biosensors and Bioreactors on the Physicochemical Properties of a Peroxidase Protein

    No full text
    External electromagnetic fields are known to be able to concentrate inside the construction elements of biosensors and bioreactors owing to reflection from their surface. This can lead to changes in the structure of biopolymers (such as proteins), incubated inside these elements, thus influencing their functional properties. Our present study concerned the revelation of the effect of spherical elements, commonly employed in biosensors and bioreactors, on the physicochemical properties of proteins with the example of the horseradish peroxidase (HRP) enzyme. In our experiments, a solution of HRP was incubated within a 30 cm-diameter titanium half-sphere, which was used as a model construction element. Atomic force microscopy (AFM) was employed for the single-molecule visualization of the HRP macromolecules, adsorbed from the test solution onto mica substrates in order to find out whether the incubation of the test HRP solution within the half-sphere influenced the HRP aggregation state. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was employed in order to reveal whether the incubation of HRP solution within the half-sphere led to any changes in its secondary structure. In parallel, spectrophotometry-based estimation of the HRP enzymatic activity was performed in order to find out if the HRP active site was affected by the electromagnetic field under the conditions of our experiments. We revealed an increased aggregation of HRP after the incubation of its solution within the half-sphere in comparison with the control sample incubated far outside the half-sphere. ATR-FTIR allowed us to reveal alterations in HRP’s secondary structure. Such changes in the protein structure did not affect its active site, as was confirmed by spectrophotometry. The effect of spherical elements on a protein solution should be taken into account in the development of the optimized design of biosensors and bioreactors, intended for performing processes involving proteins in biomedicine and biotechnology, including highly sensitive biosensors intended for the diagnosis of socially significant diseases in humans (including oncology, cardiovascular diseases, etc.) at early stages

    Atomic Force Microscopy Study of the Effect of an Electric Field, Applied to a Pyramidal Structure, on Enzyme Biomolecules

    No full text
    The influence of an external constant strong electric field, formed using a pyramidal structure under a high electric potential, on an enzyme located near its apex, is studied. Horseradish peroxidase (HRP) is used as a model. In our experiments, a 27 kV direct current (DC) voltage was applied to two electrodes with a conducting pyramidal structure attached to one of them. The enzyme particles were visualized by atomic force microscopy (AFM) after the adsorption of the enzyme from its 0.1 µM solution onto mica AFM substrates. It is demonstrated that after the 40 min exposure to the electric field, the enzyme forms extended structures on mica, while in control experiments compact HRP particles are observed. After the exposure to the electric field, the majority of mica-adsorbed HRP particles had a height of 1.2 nm (as opposed to 1.0 nm in the case of control experiments), and the contribution of higher (>2.0 nm) particles was also considerable. This indicates the formation of high-order HRP aggregates under the influence of an applied electric field. At that, the enzymatic activity of HRP against its substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) remains unaffected. These results are important for studying macroscopic effects of strong electromagnetic fields on enzymes, as well as for the development of cellular structure models

    Detection of Circulating Serum microRNA/Protein Complexes in ASD Using Functionalized Chips for an Atomic Force Microscope

    No full text
    MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood–brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2)

    The Influence of a High-Voltage Discharge in a Helicoidal Twisted-Pair Structure on Enzyme Adsorption

    No full text
    The effect of a high-voltage discharge in a helicoidal structure on the adsorption properties of an enzyme on mica has been studied with the example of horseradish peroxidase (HRP). The discharge was generated at the expense of a sparkover in a 3 mm gap between two electrodes, to which a 10 kV, 50 Hz AC voltage was applied. The electrodes were connected to a twisted pair, which was wound onto a cone, forming the helicoidal structure. The incubation of the enzyme solution near the top of the helicoidal structure has been found to cause an increase in the degree of aggregation of HRP adsorbed on mica in comparison with the control HRP sample. The results obtained should be taken into account in studies of enzymes using biosensors with helicoidal structures as heating elements, as well as in refining models describing effects of low-frequency alternating current, flowing through helicoidal structures, on proteins and biological objects

    AFM Investigation of the Influence of Steam Flow through a Conical Coil Heat Exchanger on Enzyme Properties

    No full text
    The present study is aimed at the revelation of subtle effects of steam flow through a conical coil heat exchanger on an enzyme, incubated near the heat exchanger, at the nanoscale. For this purpose, atomic force microscopy (AFM) has been employed. In our experiments, horseradish peroxidase (HRP) was used as a model enzyme. HRP is extensively employed as a model in food science in order to determine the influence of electromagnetic fields on enzymes. Adsorption properties of HRP on mica have been studied by AFM at the level of individual enzyme macromolecules, while the enzymatic activity of HRP has been studied by spectrophotometry. The solution of HRP was incubated either near the top or at the side of the conically wound aluminium pipe, through which steam flow passed. Our AFM data indicated an increase in the enzyme aggregation on mica after its incubation at either of the two points near the heat exchanger. At the same time, in the spectrophotometry experiments, a slight change in the shape of the curves, reflecting the HRP-catalyzed kinetics of ABTS oxidation by hydrogen peroxide, has also been observed after the incubation of the enzyme solution near the heat exchanger. These effects on the enzyme adsorption and kinetics can be explained by alterations in the enzyme hydration caused by the influence of the electromagnetic field, induced triboelectrically by the flow of steam through the heat exchanger. Our findings should thus be considered in the development of equipment involving conical heat exchangers, intended for either research or industrial use (including miniaturized bioreactors and biosensors). The increased aggregation of the HRP enzyme, observed after its incubation near the heat exchanger, should also be taken into account in analysis of possible adverse effects from steam-heated industrial equipment on the human body
    corecore