10,540 research outputs found

    Thermal instability of a compound resonator

    Get PDF
    We investigate the thermal and Kerr nonlinearity in a system of two optically-coupled silica microtoroid resonators experimentally and theoretically. A model for two coupled oscillators describing nonlinear resonance curves is developed. Stability of the static solutions is analyzed. It is shown that thermal nonlinearity is responsible for driving the eigenfrequencies of the two resonators apart, making the normal modes of the system unstable as the pump power grows. The red-detuned normal mode becomes unstable for certain pumping powers

    A catalogue of integrated H-alpha fluxes for 1,258 Galactic planetary nebulae

    Full text link
    We present a catalogue of new integrated H-alpha fluxes for 1258 Galactic planetary nebulae (PNe), with the majority, totalling 1234, measured from the Southern H-Alpha Sky Survey Atlas (SHASSA) and/or the Virginia Tech Spectral-line Survey (VTSS). Aperture photometry on the continuum-subtracted digital images was performed to extract H-alpha + [NII] fluxes in the case of SHASSA, and H-alpha fluxes from VTSS. The [NII] contribution was then deconvolved from the SHASSA flux using spectrophotometric data taken from the literature or derived by us. Comparison with previous work shows that the flux scale presented here has no significant zero-point error. Our catalogue is the largest compilation of homogeneously derived PN fluxes in any waveband yet measured, and will be an important legacy and fresh benchmark for the community. Amongst its many applications, it can be used to determine statistical distances for these PNe, determine new absolute magnitudes for delineating the faint end of the PN luminosity function, provide baseline data for photoionization and hydrodynamical modelling, and allow better estimates of Zanstra temperatures for PN central stars with accurate optical photometry. We also provide total H-alpha fluxes for another 75 objects which were formerly classified as PNe, as well as independent reddening determinations for ~270 PNe, derived from a comparison of our H-alpha data with the best literature H-beta fluxes. In an appendix, we list corrected H-alpha fluxes for 49 PNe taken from the literature, including 24 PNe not detected on SHASSA or VTSS, re-calibrated to a common zero-point.Comment: 49 pages, 7 figures, 10 tables, to appear in MNRAS. This version includes full-length tables 1 and

    The Hα\alpha surface brightness - radius plane as a diagnostic tool for photoionized nebulae

    Get PDF
    The Hα\alpha surface brightness - radius (SrS-r) relation is a robust distance indicator for planetary nebulae (PNe), further enhanced by different populations of PNe having distinct loci in SrS-r space. Other types of photoionized nebulae also plot in quite distinct regions in the SrS-r plane, allowing its use as a diagnostic tool. In particular, the nova shells and massive star ejecta (MSE) plot on relatively tight loci illustrating their evolutionary sequences. For the MSE, there is potential to develop a distance indicator for these objects, based on their trend in SrS-r space. As high-resolution, narrowband surveys of the nearest galaxies become more commonplace, the SrS-r plane is a potentially useful diagnostic tool to help identify the various ionized nebulae in these systems.Comment: 4 pages, 2 figures. To appear in the proceedings of the 11th Pacific Rim Conference on Stellar Astrophysics: Physics and Chemistry of the Late Stages of Stellar Evolution, held in Hong Kong, Dec 201

    About the propagation of the Gravitational Waves in an asymptotically de-Sitter space: Comparing two points of view

    Full text link
    We analyze the propagation of gravitational waves (GWs) in an asymptotically de-Sitter space by expanding the perturbation around Minkowski and introducing the effects of the Cosmological Constant (Λ\Lambda), first as an additional source (de-Donder gauge) and after as a gauge effect (Λ\Lambda-gauge). In both cases the inclusion of the Cosmological Constant Λ\Lambda impedes the detection of a gravitational wave at a distance larger than Lcrit=(62πfh^/5)rΛ2L_{crit}=(6\sqrt{2}\pi f \hat{h}/\sqrt{5})r_\Lambda^2, where rΛ=1Λr_\Lambda=\frac{1}{\sqrt{\Lambda}} and f and h^\hat{h} are the frequency and strain of the wave respectively. We demonstrate that LcritL_{crit} is just a confirmation of the Cosmic No hair Conjecture (CNC) already explained in the literature.Comment: Accepted for publication in MPL

    Divergence-free approach for obtaining decompositions of quantum-optical processes

    Full text link
    Operator-sum representations of quantum channels can be obtained by applying the channel to one subsystem of a maximally entangled state and deploying the channel-state isomorphism. However, for continuous-variable systems, such schemes contain natural divergences since the maximally entangled state is ill-defined. We introduce a method that avoids such divergences by utilizing finitely entangled (squeezed) states and then taking the limit of arbitrary large squeezing. Using this method we derive an operator-sum representation for all single-mode bosonic Gaussian channels where a unique feature is that both quantum-limited and noisy channels are treated on an equal footing. This technique facilitates a proof that the rank-one Kraus decomposition for Gaussian channels at its respective entanglement-breaking thresholds, obtained in the overcomplete coherent state basis, is unique. The methods could have applications to simulation of continuous-variable channels.Comment: 18 pages (8 + appendices), 4 figs. V2: close to published version, dropped Sec.VI of v1 to be expanded elsewher

    Phase diagram of a two-dimensional system with anomalous liquid properties

    Full text link
    Using Monte Carlo simulation techniques, we calculate the phase diagram for a square shoulder-square well potential in two dimensions that has been previously shown to exhibit liquid anomalies consistent with a metastable liquid-liquid critical point. We consider the liquid, gas and five crystal phases, and find that all the melting lines are first order, despite a small range of metastability. One melting line exhibits a temperature maximum, as well as a pressure maximum that implies inverse melting over a small range in pressure.Comment: 11 pages, 13 figure

    New light on Galactic post-asymptotic giant branch stars. I. First distance catalogue

    Full text link
    We have commenced a detailed analysis of the known sample of Galactic post-asymptotic giant branch (PAGB) objects compiled in the Toru\'n catalogue of Szczerba et al., and present, for the first time, homogeneously derived distance determinations for the 209 likely and 87 possible catalogued PAGB stars from that compilation. Knowing distances are essential in determining meaningful physical characteristics for these sources and this has been difficult to determine for most objects previously. The distances were determined by modelling their spectral energy distributions (SED) with multiple black-body curves, and integrating under the overall fit to determine the total distance-dependent flux. This method works because the luminosity of these central stars is very nearly constant from the tip of the AGB phase to the beginning of the white-dwarf cooling track. This then enables us to use a standard-candle luminosity to estimate the SED distances. For Galactic thin disk PAGB objects, we use three luminosity bins based on typical observational characteristics, ranging between 3500 and 12000 L_sun. We further adopt a default luminosity of 1700 L_sun for all halo PAGB objects. We have also applied the above technique to a further sample of 69 related nebulae not in the current edition of the Toru\'n catalogue. In a follow-up paper we will estimate distances to the subset of RV Tauri variables using empirical period-luminosity relations, and to the R\,CrB stars, allowing a population comparison of these objects with the other subclasses of PAGB stars for the first time.Comment: 24 pages, 8 tables, 4 figures. Submitted to MNRAS. Appendix B containing full list of SED figures excluded in this versio

    Meron excitations in the nu =1 quantum Hall bilayer and the plasma analogy

    Full text link
    We study meron quasiparticle excitations in the \nu = 1 quantum Hall bilayer. Considering the well known single meron state, we introduce its effective form, valid in the longdistance limit. That enables us to propose two (and more) meron states in the same limit. Further, establishing a plasma analogy of the (111) ground state, we find the impurities that play the role of merons and derive meron charge distributions. Using the introduced meron constructions in generalized (mixed) ground states and corresponding plasmas for arbitrary distance between the layers, we calculate the interaction between the construction implied impurities. We also find a correspondence between the impurity interactions and meron interactions. This suggests a possible explanation of the deconfinement of the merons recently observed in the experiments.Comment: 5 pages, 3 figure

    The stellar kinematics of co-rotating spiral arms in Gaia mock observations

    Get PDF
    We have observed an N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way like barred spiral galaxy. We present a simple method that samples N-body model particles into mock Gaia stellar observations and takes into account stellar populations, dust extinction and Gaia's science performance estimates. We examine the kinematics around a nearby spiral arm at a similar position to the Perseus arm at three lines of sight in the disc plane; (l,b)=(90,0), (120,0) and (150,0) degrees. We find that the structure of the peculiar kinematics around the co-rotating spiral arm, which is found in Kawata et al. (2014b), is still visible in the observational data expected to be produced by Gaia despite the dust extinction and expected observational errors of Gaia. These observable kinematic signatures will enable testing whether the Perseus arm of the Milky Way is similar to the co-rotating spiral arms commonly seen in N-body simulations.Comment: 9 pages 4 Figures, submitted to MNRAS 22nd Dec 201
    corecore