9 research outputs found
Experimental and numerical study for high energy impact absorption with a composite material in aeroautics
Aeronautics search high performance materials for structural weight reduction and impact energy absorption. Composite offers perspectives related to mass and stiffness ratio. However, the dispersion of their mechanical properties due to environmental conditions or impact behaviour hinders their development. Currently, honeycomb solutions and complex energy absorption mechanisms are used. The sizing of structures is controlled for conventional loads, but not for severe cases such avian impact. In the context of the development of an innovative reinforced aeronautical structure, the objective of this study is to identify and characterize a new concept of absorbent composite material at the coupon scale. In order to improve reliability and optimize its absorption characteristics during high-energy impact, works are realized to develop in parallel an experimental study methodology and a finite element model. The purpose of the latter is to have a predictive tool validated by correlation with experimental to ensure virtual testing. Lack of knowledge of the nonlinear behaviour of the composite material at high deformation, for different speeds, as well as the mechanisms of damage and fracture are locks to its development. Absence of a dedicated experiment matrix presents a difficulty for its characterization and sizing. The approach begins with the analysis and prioritization of the existing to determine the definition criteria of the new concept. After development of an experimental characterization study, the qualification and justification of the new concept is validated by correlation with a dedicated numerical simulation methodology. The results of the study highlight the analysis and development of an interesting concept