24 research outputs found
Evaluation of the Environmental Fate of a Semivolatile Transformation Product of Ibuprofen Based on a Simple Two-Media Fate Model
Partitioning between surface waters and the atmosphere is an important process, influencing the fate and transport of semi-volatile contaminants. In this work, a simple methodology that combines experimental data and modeling was used to investigate the degradation of a semi-volatile pollutant in a two-phase system (surface water + atmosphere). 4-Isobutylacetophenone (IBAP) was chosen as a model contaminant; IBAP is a toxic transformation product of the non-steroidal, anti-inflammatory drug ibuprofen. Here, we show that the atmospheric behavior of IBAP would mainly be characterized by reaction with center dot OH radicals, while degradation initiated by center dot NO3 or direct photolysis would be negligible. The present study underlines that the gas phase reactivity of IBAP with center dot OH is faster, compared to the likely kinetics of volatilization from aqueous systems. Therefore, it might prove very difficult to detect gas-phase IBAP. Nevertheless, up to 60% of IBAP occurring in a deep and dissolved organic carbon-rich water body might be eliminated via volatilization and subsequent reaction with gas-phase center dot OH. The present study suggests that the gas-phase chemistry of semi-volatile organic compounds which, like IBAP, initially occur in natural water bodies in contact with the atmosphere is potentially very important in some environmental conditions.Peer reviewe
Atmospheric breakdown chemistry of the new "green" solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals
The atmospheric chemistry of 2,2,5,5-tetramethyloxolane (TMO), a promising "green"solvent replacement for toluene, was investigated in laboratory-based experiments and computational calculations. Results from both absolute and relative rate studies demonstrated that the reaction OH + TMO (Reaction R1) proceeds with a rate coefficient k1(296 K) = (3.1±0.4) ×10-12 cm3 molecule-1 s-1, a factor of 3 smaller than predicted by recent structure-activity relationships. Quantum chemical calculations (CBS-QB3 and G4) demonstrated that the reaction pathway via the lowest-energy transition state was characterised by a hydrogen-bonded pre-reaction complex, leading to thermodynamically less favoured products. Steric hindrance from the four methyl substituents in TMO prevents formation of such H-bonded complexes on the pathways to thermodynamically favoured products, a likely explanation for the anomalous slow rate of Reaction (R1). Further evidence for a complex mechanism was provided by k1(294-502 K), characterised by a local minimum at around T=340 K. An estimated atmospheric lifetime of τ1 ≈3 d was calculated for TMO, approximately 50 % longer than toluene, indicating that any air pollution impacts from TMO emission would be less localised. An estimated photochemical ozone creation potential (POCPE) of 18 was calculated for TMO in north-western Europe conditions, less than half the equivalent value for toluene. Relative rate experiments were used to determine a rate coefficient of k2(296 K) = (1.2±0.1) ×10-10 cm3 molecule-1 s-1 for Cl + TMO (Reaction R2); together with Reaction (R1), which is slow, this may indicate an additional contribution to TMO removal in regions impacted by high levels of atmospheric chlorine. All results from this work indicate that TMO is a less problematic volatile organic compound (VOC) than toluene
Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions
Nitrophenols are important products of the aromatic compounds photooxidation and play a considerable role in urban chemistry. Nitrophenols are important components of agricultural biomass burning that could influence the climate. The formation of secondary organic aerosol from the direct photolysis of nitrophenols was investigated for the first time in a quartz glass simulation chamber under simulated solar radiation. The results from these experiments indicate rapid SOA formation. The proposed mechanism for the gas-phase degradation of nitrophenols through photolysis shows the formation of biradicals that could react further in the presence of oxygen to form low volatile highly oxygenated compounds responsible for secondary organic aerosol formation. The inhibiting effect of NOx and the presence of an OH radical scavenger on the aerosol formation were also studied. For 2-nitrophenol, significant aerosol formation yields were observed in the absence of an OH radical scavenger and NOx, varying in the range of 18%–24%. A gas-phase/aerosol partitioning model was applied assuming the presence of only one compound in both phases. A degradation mechanism is proposed to explain the aerosol formation observed in the photolysis of nitrophenols. The atmospheric impact of nitrophenol photolysis is discussed and the importance for atmospheric chemical models is assessed
Products and Mechanism of the Reactions of OH Radicals and Cl Atoms with Methyl Methacrylate (CH2═C(CH3)C(O)OCH3) in the Presence of NOx
The OH radical and Cl atom initiated photodegradation of methyl methacrylate has been investigated in a 1080 L quartz-glass environmental chamber at 298 ± 2 K and atmospheric pressure of synthetic air using in situ FTIR spectroscopy to monitor the reactants and products. The major products observed in the OH reaction were methyl pyruvate (92 ± 16%) together with formaldehyde (87 ± 12%) as a coproduct from the C1–C2 bond cleavage channel of the intermediate 1,2-hydroxyalkoxy radical, formed by the addition of OH to the terminal carbon of the double bond which is designated C1. For the Cl atom reaction, the products identified were chloroacetone (41 ± 6%) together with its coproduct formaldehyde (35 ± 5%) and methyl pyruvate (24 ± 4%) together with its coproduct formylchloride (25 ± 4%). The results show that the fate of the intermediate 1,2-chloroalkoxy radical involves not only cleavage of the C1–C2 bond but also quite substantial cleavage of the C2–C3 bond. The present results are compared with previous studies of acrylates, showing different branching ratios for the OH and Cl addition reactions in the presence of NOx. Atmospheric implications are discussed.Fil: Blanco, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Bejan, Iustinian. Bergische Universitaet Wuppertal. Wuppertal; Alemania. “Al. I. Cuza” University of Iasi; RumaniaFil: Barnes, Ian. Bergische Universitaet Wuppertal. Wuppertal; AlemaniaFil: Wiesen, Peter. Bergische Universitaet Wuppertal. Wuppertal; AlemaniaFil: Teruel, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin
The Cl-initiated oxidation of CH3C(O)OCH=CH2, CH3C(O)OCH2CH=CH2, and CH2=CHC(O)O(CH2)3CH3 in the troposphere
Background, aim, and scope Unsaturated esters are emitted to the atmosphere from biogenic and anthropogenic sources, including those from the polymer industry. Little information exists concerning the atmospheric degradation of unsaturated esters, which are mainly initiated by OH radicals. Limited information is available on the degradation of alkenes by Cl atoms and almost no data exists for the reactions of unsaturated esters with Cl atoms. This data is necessary to assess the impact of such reactions in maritime environments where, under circumstances, OH radical- and Cl atom-initiated oxidation of the compounds can be important. Rate coefficients for the reactions of chlorine atoms with vinyl acetate, allyl acetate, and n-butyl acrylate have been determined at 298 ± 3 K and atmospheric pressure. The kinetic data have been used in combination with that for structurally similar compounds to infer the kinetic contributions from the possible reaction channels to the overall reaction rate. Materials and methods The decay of the organics was followed using in situ Fourier transform infrared spectroscopy and the rate coefficients were determined using a relative kinetic method and different hydrocarbon reference compounds. Results The following room temperature rate coefficients (in cm3 molecule-1 s-1) were obtained: k1 (Cl+CH3C(O)OCH=CH2) = (2.68±0.91) × 10-10, k2 (Cl+CH3C(O)OCH2CH=CH2)=(1.30±0.45) × 10-10, and k3 (Cl+CH2=CHC(O)O(CH2)3CH3)=(2.50±0.78) × 10-10, where the uncertainties are a combination of the 2σ statistical errors from linear regression analyses and a contribution to cover uncertainties in the rate coefficients of the reference hydrocarbons. Discussion This is the first kinetic study of the title reactions under atmospheric conditions. The kinetic data were analyzed in terms of reactivity trends and used to estimate the atmospheric lifetimes of the esters and assess their potential importance in the marine atmosphere. Conclusions Although reaction with OH radicals is the major atmospheric sink for the unsaturated esters studied, reaction with Cl atoms can compete in the early morning hours in coastal areas where the Cl concentration can reach peak values as high as 1 × 105 atoms cm-3. The calculated residence times show that the chemistry of unsaturated esters will impact air quality locally near their emission sources. Recommendations and perspectives The reactions need to be studied over the range of temperatures and pressures generally encountered in the marine atmosphere. In addition, product studies should also be performed as a function of temperature since this will allow degradation mechanisms to be derived, which are representative for the wide range of conditions occurring in marine environments. Inclusion of the kinetic and product data in tropospheric numerical models will allow an assessment of potential environmental impacts of the esters for different marine pollution scenarios. © Springer-Verlag 2008.Fil: Blanco, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Bejan, Iustinian. Bergische Universität Wuppertal; Alemania. University of Iasi; RumaniaFil: Barnes, Ian. Bergische Universität Wuppertal; AlemaniaFil: Wiesen, Peter. Bergische Universität Wuppertal; AlemaniaFil: Teruel, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin
Temperature-dependent rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate and butyl methacrylate at atmospheric pressure
Rate coefficients for the gas-phase reactions of Cl atoms with a series of unsaturated esters CH2double bond, long C(CH3)C(O)OCH3 (MMA), CH2 double bond, long CHC(O)OCH3 (MAC) and CH2 double bond, long C(CH3)C(O)O(CH2)3CH3 (BMA) have been measured as a function of temperature by the relative technique in an environmental chamber with in situ FTIR detection of reactants. The rate coefficients obtained at 298 K in one atmosphere of nitrogen or synthetic air using propene, isobutene and 1,3-butadiene as reference hydrocarbons were (in units of 10-10 cm3 molecule-1 s -1) as follows: k(Cl+MMA) = 2.82 ± 0.93, k(Cl+MAC) = 2.04 ± 0.54 and k(Cl+BMA) = 3.60 ± 0.87. The kinetic data obtained over the temperature range 287-313 K were used to derive the following Arrhenius expressions (in units of cm3 molecule-1 s-1) k(Cl+MMA) = (13.9 ± 7.8) × 10-15 exp (2904 ± 420)/T, k(Cl+MAC) = (0.4 ± 0.2) × 10-15 exp(3884 ± 879)/T], k(Cl+BMA) = (0.98 ± 0.42) × 10-15 exp(3779 ± 850)/T. All the rate coefficients display a slight negative temperature dependence which points to the importance of the reversibility of the addition mechanism for these reactions. This work constitutes the first kinetic and temperature dependence study of the reactions cited above. An analysis of the available rates of addition of Cl atoms and OH radicals to the double bond of alkenes and unsaturated and oxygenated volatile organic compounds (VOCs) at 298 K has shown that they can be related by the expression: log kOH = 1.09 log kCl - 0.10. In addition, a correlation between the reactivity of unsaturated VOCs toward OH radicals and Cl atoms and the HOMO of the unsaturated VOC is presented. Tropospheric implications of the results are also discussed.Fil: Blanco, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Bejan, Iustinian. Bergische Universitaet Wuppertal; AlemaniaFil: Barnes, Ian. Bergische Universitaet Wuppertal; AlemaniaFil: Wiesen, Peter. Bergische Universitaet Wuppertal; AlemaniaFil: Teruel, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin
Rate coefficients at 298 K and 1 atm for the tropospheric degradationof a series of C6,C7and C8biogenic unsaturated alcohols initiated by Clatoms
Rate coefficients for the gas-phase reactions of Cl atoms with a series of unsaturated biogenic alcohols at 298 ± 3 K and 1 atm have been measured by the relative technique in an environmental chamber with in situ FTIR detection of reactants. The rate coefficients obtained using 1-butene and isobutene as reference compounds were (in units of 10−10 cm3 molecule−1 s−1): k1((E)-2-hexen-1-ol) = (3.49 ± 0.82), k2((E)-3-hexen-1-ol) = (3.42 ± 0.79), k3 ((Z)-3-hexen-1-ol) = (2.94 ± 0.72), k4((Z)-3-hepten-1-ol) = (3.80 ± 0.86) and k5((Z)-3-octen-1-ol) = (4.13 ± 0.68). This work constitutes the first kinetic study of the reactions cited above. The rate coefficients are compared with those for other unsaturated alcohols and a correlation between the reactivity of unsaturated alcohols toward Cl atoms and the energy of the HOMO of the unsaturated alcohols is presented. Based on the obtained results, the atmospheric lifetimes of the unsaturated alcohols have been estimated and possible atmospheric implications assessed.Fil: Gibilisco, Rodrigo Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Bejan, Iustinian. Universität Wuppertal. Wuppertal; Alemania. Al. I. Cuza” University. Iasi; RumaniaFil: Barnes, Ian. Universität Wuppertal. Wuppertal; AlemaniaFil: Wiesen, Peter. Universität Wuppertal. Wuppertal; AlemaniaFil: Teruel, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin
Tropospheric chemical degradation of vinyl and allyl acetate initiated by Cl atoms under high and low NO x conditions
The products of the reactions of Cl atoms with vinyl acetate (VA) and allyl acetate (AA) have been investigated in a 1080 L chamber using in situ FTIR. The experiments were performed at 296 K and atmospheric pressure of synthetic air in the presence and in the absence of NOx. For the reaction of Cl with VA in the presence of NOx formic acetic anhydride, acetic acid and formyl chloride are the major reaction products. In the absence of NOx, the yields of these products are significantly reduced and formation of the carbon-chain-retaining compound CH3C(O)OC(O)CH2Cl is observed. For the reaction of Cl with AA in the presence of NOx acetoxyacetaldehyde and formaldehyde were observed as the main products. In contrast, without NOx, the observations support that the major reaction pathway is the formation of the carbon-chain-retaining compound CH3C(O)OCH2C(O)CH2Cl. The reaction mechanisms leading to the products are discussed. The formation of the high yields of formyl chloride and formaldehyde in the reactions of Cl with VA and AA, respectively, are at odds with currently accepted mechanistic pathways.Fil: Blanco, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Bejan, Iustinian. Bergische Universitaet Wuppertal; Alemania. “Al. I. Cuza” University of Iasi; RumaniaFil: Barnes, Ian. Bergische Universitaet Wuppertal; AlemaniaFil: Wiesen, Peter. Bergische Universitaet Wuppertal; AlemaniaFil: Teruel, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin