11 research outputs found

    In Situ Generation of Green Hybrid Nanofibrillar Polymer-Polymer Composites—A Novel Approach to the Triple Shape Memory Polymer Formation

    No full text
    International audienceThe paper discusses the possibility of using in situ generated hybrid polymer-polymer nanocomposites as polymeric materials with triple shape memory, which, unlike conventional polymer blends with triple shape memory, are characterized by fully separated phase transition temperatures and strongest bonding between the polymer blends phase interfaces which are critical to the shape fixing and recovery. This was demonstrated using the three-component system polylactide/polybutylene adipateterephthalate/cellulose nanofibers (PLA/PBAT/CNFs). The role of in situ generated PBAT nanofibers and CNFs in the formation of efficient physical crosslinks at PLA-PBAT, PLA-CNF and PBAT-CNF interfaces and the effect of CNFs on the PBAT fibrillation and crystallization processes were elucidated. The in situ generated composites showed drastically higher values of strain recovery ratios, strain fixity ratios, faster recovery rate and better mechanical properties compared to the blend

    Nanofibrillar Green Composites of Polylactide/Polyhydroxyalkanoate Produced in Situ Due to Shear Induced Crystallization

    No full text
    This study addresses the new concept of in situ inducing fibrillar morphology (micro or nanofibrils) of a minority component based on the simultaneous occurrence of orientation and shear induced crystallization of polymer fibers directly at the stage of extrusion in a single step. This possibility is demonstrated by using two entirely bio-sourced polymers: polylactide (PLA) and polyhydroxyalkanoate (PHA) as components. The shear induced crystallization allowed crystallization of PHA nanofibers immediately after applying high shear rate and elongation strain, avoiding subsequent cooling to initiate crystallization. Shearing of PHA increased non-isothermal crystallization temperature by 50 °C and decreased the temperature range in which the transition from a molten state to a crystallized one occurs by 17 °C. SEM observations demonstrate the successful transformation of the dispersed PHA phase into nanofibrils with diameters of nearly 200 nm. The transition from the droplets of PHA to fibers causes the brittle-to-ductile transition of the PLA matrix at a low concentration of PHA and contributes to the simultaneous increase of its rigidity and strength

    Modeling strain-induced dual-phase transformation in semicrystalline polylactide

    No full text
    International audiencePolylactic acid or polylactide (PLA) can form amorphous, semicrystalline, or highly crystalline structure. In this paper, we provide a model for semicrystalline PLA under straininduced dual-phase transformation, between mesomorphization and crystallization. In the proposed constitutive model, we use an internal state variable approach by considering initial microstructure, strain-induced dual-phase transformation, intermolecular features, and preferred network orientation-induced anisotropy. The effective contribution of the newly created phases is considered in both the elastic-viscoplastic intermolecular resistance and the viscohyperelastic network resistance using a micro-macro transition approach. We find a good agreement between the model and experimental data for the semicrystalline PLA in terms of progressive evolution of the mesomorphic/crystalline phases along with stressstrain behavior up to very large strains and over a wide range of crystallinities. The relationship between initial crystallinity, strain-induced molecular ordering, newly created phases, and mechanical response is discussed

    New Approach for Extrusion Additive Manufacturing of Soft and Elastic Articles from Liquid-PVC-Based Consumable Materials

    No full text
    The article deals with the experimental development of a novel additive manufacturing (AM) process using a liquid consumable based on polyvinyl chloride plastisol. A conventional additive manufacturing system designed for deposition of melt filaments was converted to deposition of liquid material. Additive manufacturing with liquid plastisol enables the production of parts with low Shore A hardness and high ductility, surpassing the performance of the conventional filament process. The novel AM process enables the production of articles with a Shore A hardness of 5 to 60, and the mechanical properties of the additively manufactured articles are similar to those produced in the mold. This was achieved by varying the parameters of the AM process as well as the composition of the plastisol composition, including those filled with an inorganic filler. The application of different material distribution patterns also has a significant effect on the mechanical properties of the samples. A potential application of the investigated AM method was proposed and practically evaluated

    Formation of UHMWPE Nanofibers during Solid-State Deformation

    No full text
    A network of nanofibers is formed in situ through solid-state deformation of disentangled ultra-high molecular weight polyethylene (dis-UHMWPE) during compounding with a polyolefin elastomer below the melting temperature of dis-UHMWPE crystals. Dis-UHMWPE was prepared in the form of powder particles larger than 50 μm by polymerization at low temperatures, which favored the crystallization and prevention of macromolecules from entangling. Shearing the blend for different durations and at different temperatures affects the extent to which the grains of dis-UHMWPE powder deform into nanofibers. Disentangled powder particles could deform into a network of nanofibers with diameters between 110 and 340 nm. The nanocomposite can be further sheared for a longer time to decrease the diameter of dis-UHMWPE nanofibers below 40 nm, being still composed of ≈70 wt.% of crystalline and ≈30 wt.% of amorphous components. Subsequently, these thinner fibers begin to melt and fragment because they are thinner and also because the amorphous defects locally decrease the nanofibers’ melting temperature, which results in their fragmentation and partial loss of nanofibers. These phenomena limit the thickness of dis-UHMWPE nanofibers, and this explains why prolonged or more intense shearing does not lead to thinner nanofibers of dis-UHMWPE when compounded in a polymeric matrix

    Microstructure and Mechanical Properties of Severely Deformed Polypropylene in ECAE (Equal Channel Angular Extrusion) via Routes A and C

    No full text
    Equal channel angular extrusion (ECAE) is a solid-state extrusion process for modifying microstructures via severe plastic deformation without modifying the specimen cross section. In this study, changes in the microstructure and mechanical properties of polypropylene resulting from extrusion orientation route A (no rotation between extrusions) and extrusion orientation route C (a rotation of 180° between extrusions) are investigated using a 90° die-angle tooling outfitted with back pressure. Important differences are reported for the ECAE-induced deformation behavior between the two processing routes. A focus is made on the occurrence of heterogeneous plastic deformations (periodic shear banding and warping) for both routes and the control and inhibition of the plastic instabilities via regulated back pressure and ram velocity. Wide-angle X-ray scattering is carried out to characterize the structural evolution as a function of the processing conditions including route, extrusion velocity and BP application. The mechanical properties of the specimens machined from the ECAE pieces are examined under different loading paths including uniaxial tension/compression and simple shear. Full-field displacements converted to volumetric strains revealed the profound impacts of the processing route on the deformation mechanisms during tensile deformation
    corecore