63 research outputs found

    MATERIALS FOR AUTOMOTIVE INDUSTRY AND THEIR INFLUENCE ON THE DYNAMICS OF A CAR CRASH

    Get PDF
    The aim of this research was to determine the influence of the metallic materials characteristics on the dynamics of a car crash. Another important aspect is that the metallic parts are sometimes repaired after minor accidents and this fact influence strongly the mechanical characteristics and their influence on the dynamics of a car crash. In this paper, we analyze the mechanical characteristics of thin steel plates repaired by local heating associated with plastic deformation (similar to hot working) and cold straightening (similar to local cold working) for automotive side and door panels made of structural steel. Thin sheet plates, 0.9mm thickness, were deformed by impact and repaired by local heating using the flame and induction heating then plastically deformed while hot as well as straightened without heating. The heat repaired samples were studied by light microscopy to determine microstructure change and samples were tensile tested to determine their mechanical characteristics. Local excessive grain growth generates anisotropy, the assembly behaves as a composite material with regions that show significant plastic deformations while others little or no deformations at all. Without procedures adjusted to each material repairs involving heating are to be avoided, cold working should be employed when replacement is not possible

    MATERIALS FOR AUTOMOTIVE INDUSTRY AND THEIR INFLUENCE ON THE DYNAMICS OF A CAR CRASH

    Get PDF
    The aim of this research was to determine the influence of the metallic materials characteristics on the dynamics of a car crash. Another important aspect is that the metallic parts are sometimes repaired after minor accidents and this fact influence strongly the mechanical characteristics and their influence on the dynamics of a car crash. In this paper, we analyze the mechanical characteristics of thin steel plates repaired by local heating associated with plastic deformation (similar to hot working) and cold straightening (similar to local cold working) for automotive side and door panels made of structural steel. Thin sheet plates, 0.9mm thickness, were deformed by impact and repaired by local heating using the flame and induction heating then plastically deformed while hot as well as straightened without heating. The heat repaired samples were studied by light microscopy to determine microstructure change and samples were tensile tested to determine their mechanical characteristics. Local excessive grain growth generates anisotropy, the assembly behaves as a composite material with regions that show significant plastic deformations while others little or no deformations at all. Without procedures adjusted to each material repairs involving heating are to be avoided, cold working should be employed when replacement is not possible

    Strontium Substituted Tricalcium Phosphate Bone Cement: Short and Long‐Term Time‐Resolved Studies and In Vitro Properties

    Get PDF
    Due to a significant influence of strontium (Sr) on bone regeneration, Sr substituted beta-tricalcium phosphate (Sr-TCP) cement is prepared and investigated by short- and long-term time-resolved techniques. For short-term investigations, energy-dispersive X-ray diffraction, infrared spectroscopy, and, for the first time, terahertz time-domain spectroscopy techniques are applied. For long-term time-resolved studies, angular dispersive X-ray diffraction, scanning electron microscopy, mechanical tests, and behavior in Ringer solution are carried out. After 45 min of the cement setting, the Sr-TCP phase is no longer detectable. During this time period, an appearance and constant increase of the final brushite phase are registered. The compressive strength of the Sr-TCP cement increases from 4.5 MPa after 2 h of setting and reaches maximum at 13.3 MPa after 21 d. After cement soaking for 21 d in Ringer solution, apatite final product, with an admixture of brushite and TCP phases is detected. The cytotoxicity aspects of the prepared cement are investigated using NCTC 3T3 fibroblast cell line, and the cytocompatibility-by human dental pulp mesenchymal stem cells. The obtained results allow to conclude that the developed Sr-TCP cement is promising for biomedical applications for bone tissue

    Comparative Assessment of In Vitro and In Vivo Biodegradation of Mg-1Ca Magnesium Alloys for Orthopedic Applications

    No full text
    Use of magnesium implants is a new trend in orthopedic research because it has several important properties that recommend it as an excellent resorbable biomaterial for implants. In this study, the corrosion rate and behavior of magnesium alloys during the biodegradation process were determined by in vitro assays, evolution of hydrogen release, and weight loss, and further by in vivo assays (implantation in rabbits’ bone and muscle tissue). In these tests, we also used imaging assessments and histological examination of different tissue types near explants. In our study, we analyzed the Mg-1Ca alloy and all the hypotheses regarding the toxic effects found in in vitro studies from the literature and those from this in vitro study were rejected by the data obtained by the in vivo study. Thus, the Mg-1Ca alloy represents a promising solution for orthopedic surgery at the present time, being able to find applicability in the small bones: hand or foot

    Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing

    No full text
    The main objective of this research is to prove the viability of obtaining magnesium (Mg) filled polylactic acid (PLA) biocomposites as filament feedstock for material extrusion-based additive manufacturing (AM). These materials can be used for medical applications, thus benefiting of all the advantages offered by AM technology in terms of design freedom and product customization. Filaments were produced from two PLA + magnesium + vitamin E (α-tocopherol) compositions and then used for manufacturing test samples and ACL (anterior cruciate ligament) screws on a low-cost 3D printer. Filaments and implant screws were characterized using SEM (scanning electron microscopy), FTIR (fourier transform infrared spectrometry), and DSC (differential scanning calorimetry) analysis. Although the filament manufacturing process could not ensure a uniform distribution of Mg particles within the PLA matrix, a good integration was noticed, probably due to the use of vitamin E as a precursor. The results also show that the composite biomaterials can ensure and maintain implant screws structural integrity during the additive manufacturing process

    In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration

    No full text
    New materials are required for bone healing in regenerative medicine able to temporarily substitute damaged bone and to be subsequently resorbed and replaced by endogenous tissues. Taking inspiration from basic composition of the mammalian bones, composed of collagen, apatite and a number of substitution ions, among them magnesium (Mg2+), in this work, novel composite scaffolds composed of collagen(10%)-hydroxyapatite (HAp)(90%) and collagen(10%)-HAp(80%)-Mg(10%) were developed. The lyophilization was used for composites preparation. An insight into the nanostructural nature of the developed scaffolds was performed by Scanning Electron Microscopy coupled with Energy Dispersive X-Ray and Transmission Electron Microscopy coupled with Energy Dispersive X-Ray. The HAp nanocrystallite clusters and Mg nanoparticles were homogeneously distributed within the scaffolds and adherent to the collagen fibrils. The samples were tested for degradation in Simulated Body Fluid (SBF) solution by soaking for up to 28 days. The release of Mg from collagen(10%)-HAp(80%)-Mg(10%) composite during the period of up to 21 days was attested, this composite being characterized by a decreased degradation rate with respect to the composite without Mg. The developed composite materials are promising for applications as bone substitute materials favouring bone healing and regeneration

    Current Research Studies of Mg–Ca–Zn Biodegradable Alloys Used as Orthopedic Implants—Review

    No full text
    Biodegradable alloys and especially magnesium-based alloys are considered by many researchers as materials to be used in medicine due to their biocompatibility and excellent mechanical properties. Biodegradable magnesium-based materials have applications in the medical field and in particular in obtaining implants for small bones of the feet and hands, ankles, or small joints. Studies have shown that Mg, Zn, and Ca are found in significant amounts in the human body and contribute effectively and efficiently to the healing process of bone tissue. Due to its biodegradability, magnesium alloys, including Mg–Ca–Zn alloys used in the manufacture of implants, do not require a second surgery, thus minimizing the trauma caused to the patient. Other studies have performed Mg–Ca–Zn system alloys with zinc variation between 0 and 8 wt.% and calcium variation up to 5 wt.%, showing high biocompatibility, adequate mechanical properties, and Mg2Ca and Mg6Ca2Zn compounds in microstructure. Biocompatibility is an essential factor in the use of these materials, so that some investigations have shown a cell viability with values between 95% and 99% compared with the control in the case of Mg–0.2Ca–3Zn alloy. In vivo analyses also showed no adverse reactions, with minimal H2 release. The aim of this review includes aspects regarding microstructure analysis and the degradation mechanisms in a specific environment and highlights the biocompatibility between the rate of bone healing and alloy degradation due to rapid corrosion of the alloys
    • 

    corecore