113 research outputs found

    Ridges and Soft Jet Components in Untriggered Di-hadron Correlations in Pb+Pb Collisions at 2.76 TeV

    Full text link
    We study untriggered di-hadron correlations in Pb+Pb at 2.76 TeV, based on an event-by-event simulation of a hydrodynamic expansion starting from flux tube initial conditions. The correlation function shows interesting structures as a function of the pseudorapidity difference Δη\Delta\eta and the azimuthal angle difference Δϕ\Delta\phi, in particular comparing different centralities. We can clearly identify a peak-like nearside structure associated with very low momentum components of jets for peripheral collisions, which disappears towards central collisions. On the other hand, a very broad ridge structure from asymmetric flow seen at central collisions, gets smaller and finally disappears towards peripheral collisions

    New Developments of EPOS 2

    Full text link
    Since 2006, EPOS hadronic interaction model is being used for very high energy cosmic ray analysis. Designed for minimum bias particle physics and used for having a precise description of SPS and RHIC heavy ion collisions, EPOS brought more detailed description of hadronic interactions in air shower development. Thanks to this model it was possible to understand why there were less muons in air shower simulations than observed in real data. With the start of the LHC era, a better description of hard processes and collective effects is needed to deeply understand the incoming data. We will describe the basic physics in EPOS and the new developments and constraints which are taken into account in EPOS 2.Comment: Contributed presentation to the XVI International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2010), Batavia, IL, USA (28 June 2 July 2010). 4 pages, 6 figure

    The "Ridge" in Proton-Proton Scattering at 7 TeV

    Full text link
    One of the most important experimental results for proton-proton scattering at the LHC is the observation of a so-called "ridge" structure in the two particle correlation function versus the pseudorapidity difference Δη\Delta\eta and the azimuthal angle difference Δϕ\Delta\phi. One finds a strong correlation around Δϕ=0\Delta\phi=0, extended over many units in Δη\Delta\eta. We show that a hydrodynamical expansion based on flux tube initial conditions leads in a natural way to the observed structure. To get this result, we have to perform an event-by-event calculation, because the effect is due to statistical fluctuations of the initial conditions, together with a subsequent collective expansion. This is a strong point in favour of a fluid-like behavior even in pppp scattering, where we have to deal with length scales of the order of 0.1 fm.Comment: 5 pages, 4 figure
    corecore