5 research outputs found
A Phase Transition between Small and Large Field Models of Inflation
We show that models of inflection point inflation exhibit a phase transition
from a region in parameter space where they are of large field type to a region
where they are of small field type. The phase transition is between a universal
behavior, with respect to the initial condition, at the large field region and
non-universal behavior at the small field region. The order parameter is the
number of e-foldings. We find integer critical exponents at the transition
between the two phases.Comment: 21 pages, 8 figure
Decoupling Inflation From the String Scale
When Inflation is embedded in a fundamental theory, such as string theory, it
typically begins when the Universe is already substantially larger than the
fundamental scale [such as the one defined by the string length scale]. This is
naturally explained by postulating a pre-inflationary era, during which the
size of the Universe grew from the fundamental scale to the initial
inflationary scale. The problem then arises of maintaining the [presumed]
initial spatial homogeneity throughout this era, so that, when it terminates,
Inflation is able to begin in its potential-dominated state. Linde has proposed
that a spacetime with compact negatively curved spatial sections can achieve
this, by means of chaotic mixing. Such a compactification will however lead to
a Casimir energy, which can lead to effects that defeat the purpose unless the
coupling to gravity is suppressed. We estimate the value of this coupling
required by the proposal, and use it to show that the pre-inflationary
spacetime is stable, despite the violation of the Null Energy Condition
entailed by the Casimir energy.Comment: 24 pages, 5 eps figures, references added, stylistic changes, version
to appear in Classical and Quantum Gravit
Volume Modulus Inflation and the Gravitino Mass Problem
The Hubble constant during the last stages of inflation in a broad class of
models based on the KKLT mechanism should be smaller than the gravitino mass, H
<~ m_{3/2}. We point out that in the models with large volume of
compactification the corresponding constraint typically is even stronger, H <~
m_{3/2}^{3/2}, in Planck units. In order to address this problem, we propose a
class of models with large volume of compactification where inflation may occur
exponentially far away from the present vacuum state. In these models, the
Hubble constant during inflation can be many orders of magnitude greater than
the gravitino mass. We introduce a toy model describing this scenario, and
discuss its strengths and weaknesses.Comment: 24 pages, JHEP style; v2. refs adde
Accidental Inflation in String Theory
We show that inflation in type IIB string theory driven by the volume modulus
can be realized in the context of the racetrack-based Kallosh-Linde model (KL)
of moduli stabilization. Inflation here arises through the volume modulus
slow-rolling down from a flat hill-top or inflection point of the scalar
potential. This situation can be quite generic in the landscape, where by
uplifting one of the two adjacent minima one can turn the barrier either to a
flat saddle point or to an inflection point supporting eternal inflation. The
resulting spectral index is tunable in the range of 0.93 < n_s < 1, and there
is only negligible production of primordial gravitational waves r < 10^{-6}.
The flatness of the potential in this scenario requires fine-tuning, which may
be justified taking into account the exponential reward by volume factors
preferring the regions of the universe with the maximal amount of slow-roll
inflation. This consideration leads to a tentative prediction of the spectral
index or depending on whether the
potential has a symmetry phi -> - phi or not.Comment: 15 pages, 6 figures, LaTeX, uses RevTex