734 research outputs found

    String Theory Versus Black Hole Complementarity

    Full text link
    It is argued that string theory on the Euclidean version of the Schwarzschild black hole -- the cigar geometry -- admits a zero mode that is localized at the tip of the cigar. The presence of this mode implies that in string theory, unlike in general relativity, the tip of the cigar is a special region. This is in tension with the Euclidean version of the black hole complementarity principle. We provide some qualitative arguments that link between this zero mode and the origin of the black hole entropy and firewall at the horizon.Comment: 8 page

    Cosmological Imprints of Pre-Inflationary Particles

    Full text link
    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies.Comment: 31 pages, 7 figure

    Inflection Point Inflation and Time Dependent Potentials in String Theory

    Full text link
    We consider models of inflection point inflation. The main drawback of such models is that they suffer from the overshoot problem. Namely the initial condition should be fine tuned to be near the inflection point for the universe to inflate. We show that stringy realizations of inflection point inflation are common and offer a natural resolution to the overshoot problem.Comment: 15 pages, 2 figures, refs. adde

    Black Hole Information vs. Locality

    Full text link
    We discuss the limitations on space time measurement in the Schwarzchild metric. We find that near the horizon the limitations on space time measurement are of the order of the black hole radius. We suggest that it indicates that a large mass black hole cannot be described by means of local field theory even at macroscopic distances and that any attempt to describe black hole formation and evaporation by means of an effective local field theory will necessarily lead to information loss. We also present a new interpretation of the black hole entropy which leads to S=cAS=cA , where cc is a constant of order 11 which does not depend on the number of fields.Comment: 19 pages, final version to appear in Phys. Rev.

    On 't Hooft's S-matrix Ansatz for quantum black holes

    Full text link
    The S-matrix Ansatz has been proposed by 't Hooft to overcome difficulties and apparent contradictions of standard quantum field theory close to the black hole horizon. In this paper we revisit and explore some of its aspects. We start by computing gravitational backreaction effects on the properties of the Hawking radiation and explain why a more powerful formalism is needed to encode them. We then use the map bulk-boundary fields to investigate the nature of exchange algebras satisfied by operators associated with ingoing and outgoing matter. We propose and comment on some analogies between the non covariant form of the S-matrix amplitude and liquid droplet physics to end up with similarities with string theory amplitudes via an electrostatic analogy. We finally recall the difficulties that one encounters when trying to incorporate non linear gravity effects in 't Hooft's S-matrix and observe how the inclusion of higher order derivatives might help in the black hole microstate counting.Comment: 22 Pages. Latex Fil

    A Phase Transition between Small and Large Field Models of Inflation

    Full text link
    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large field type to a region where they are of small field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large field region and non-universal behavior at the small field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.Comment: 21 pages, 8 figure

    Dynamical Fine Tuning in Brane Inflation

    Full text link
    We investigate a novel mechanism of dynamical tuning of a flat potential in the open string landscape within the context of warped brane-antibrane inflation in type IIB string theory. Because of competing effects between interactions with the moduli stabilizing D7-branes in the warped throat and anti-D3-branes at the tip, a stack of branes gives rise to a local minimum of the potential, holding the branes high up in the throat. As branes successively tunnel out of the local minimum to the bottom of the throat the potential barrier becomes lower and is eventually replaced by a flat inflection point, around which the remaining branes easily inflate. This dynamical flattening of the inflaton potential reduces the need to fine tune the potential by hand, and also leads to successful inflation for a larger range of inflaton initial conditions, due to trapping in the local minimum.Comment: 23 pages, 9 figures. v2: Updated D3-dependence in potential, small changes to numerical result

    Volume modulus inflection point inflation and the gravitino mass problem

    Full text link
    Several models of inflection point inflation with the volume modulus as the inflaton are investigated. Non-perturbative superpotentials containing two gaugino condensation terms or one such term with threshold corrections are considered. It is shown that the gravitino mass may be much smaller than the Hubble scale during inflation if at least one of the non-perturbative terms has a positive exponent. Higher order corrections to the Kahler potential have to be taken into account in such models. Those corrections are used to stabilize the potential in the axion direction in the vicinity of the inflection point. Models with only negative exponents require uplifting and in consequence have the supersymmetry breaking scale higher than the inflation scale. Fine-tuning of parameters and initial conditions is analyzed in some detail for both types of models. It is found that fine-tuning of parameters in models with heavy gravitino is much stronger than in models with light gravitino. It is shown that recently proposed time dependent potentials can provide a solution to the problem of the initial conditions only in models with heavy gravitino. Such potentials can not be used to relax fine tuning of parameters in any model because this would lead to values of the spectral index well outside the experimental bounds.Comment: 27 pages, 9 figures, comments and references added, version to be publishe

    The Penrose limit of AdS*S space and holography

    Full text link
    In the Penrose limit, AdS*S space turns into a Cahen-Wallach (CW) space whose Killing vectors satisfy a Heisenberg algebra. This algebra is mapped onto the holographic screen on the boundary of AdS. I show that the Heisenberg algebra on the boundary of AdS may be obtained directly from the CW space by appropriately constraining the states defined on it. The transformations generated by the constraint are similar to gauge transformations. The ``holographic screen'' on the CW space is thus obtained as a ``gauge-fixing'' condition.Comment: 12 pages, improved discussion, to appear in Mod. Phys. Lett.

    PP-wave and Non-supersymmetric Gauge Theory

    Full text link
    We extend the pp-wave correspondence to a non supersymmetric example. The model is the type 0B string theory on the pp-wave R-R background. We explicitly solve the model and give the spectrum of physical states. The field theory counterpart is given by a sector of the large N SU(N) x SU(N) CFT living on a stack of N electric and N magnetic D3-branes. The relevant effective coupling constant is g_{eff}=g_sN/J^2. The string theory has a tachyon in the spectrum, whose light-cone energy can be exactly computed as a function of g_{eff}. We argue that the perturbative analysis in g_{eff} in the dual gauge theory is reliable, with corrections of non perturbative type. We find a precise state/operator map, showing that the first perturbative corrections to the anomalous dimensions of the operators have the behavior expected from the string analysis.Comment: 19 pages. Revised versio
    • …
    corecore