4 research outputs found

    Synthesis and characterization of poly(butylene terephthalate) copolyesters derived from threitol

    Get PDF
    The synthesis, characterization, and thermal properties of partially renewable poly(butylene terephthalate) copolyesters containing alditol units are described. These copolyesters were obtained by polycondensation in solution from mixtures of 1,4-butanediol and 2,3-di-O-benzyl-L-threitol with terephthaloyl chloride. Copolyesters with weight-average molecular weights oscillating between 4 000 and 12 000 g·mol-1 and dispersities around 1.5 were obtained. All them had a random microstructure and were thermally stable well above 300°C. Copolyesters containing up to 30% of dibenzyl threitol units were found to be crystalline and to adopt the same crystal structure as the parent homopolyester poly(butylene terephthalate). The melting temperature and crystallinity were observed to decrease, and the glass transition temperature to increase, with increasing amounts of alditol units incorporated in the copolyester. Furthermore, the crystallizability was depressed by copolymerization.Peer ReviewedPostprint (author's final draft

    Kinetic Study of the Adsorption of Polyphenols from Olive Mill Wastewater onto Natural Clay: Ghassoul

    No full text
    The aim of this study is based on natural clay as an adsorbent in the elimination of polyphenols from olive mill wastewater (OMW). This clay was analyzed using XRD, SEM/EDX, FTIR, surface area measurement (BET method), thermal analysis (TGA/DTA), and X-ray fluorescence (XRF) and then used in adsorption experiments. The results reveal that the best quantity of adsorption of polyphenols is 161 mg/g at the temperature of 25°C, but they decrease at 35°C and 45°C. A great agreement with pseudo-second-order and Freundlich model is represented by kinetic and isotherms models, and several parameters such as ΔG0, ΔS0, and ΔH0 were determined using the thermodynamic function relationship

    Antioxidant and Antimicrobial Activity of Polyphenols Extracted after Adsorption onto Natural Clay “Ghassoul”

    No full text
    Natural polyphenols contained in olive mill wastewaters (OMW) have been usually associated with great bioactive properties as “antioxidants”. In this work, we recovered the polyphenols after adsorption onto natural clay “ghassoul” by different solvents: water, ethyl acetate, and methanol (PPW, PPA, and PPM, respectively) to avoid environmental pollution. Also, we tested the antioxidant activity of the extracted polyphenols by two methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC). Then, we analyzed antimicrobial activity by the microdilution technique to determine at the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The OMW of the Fez-Meknes region has a very acidic pH, considerable amounts of mineral matter, and a high concentration of polyphenols and organic content. The results of the test from DPPH showed good antiradical potential for polyphenols extracted with water, but the TAC showed an important capacity for all extracts unless PPA. The antibacterial activity is not the same on the four bacteria studied (Escherichia coli, Salmonella sp, Staphylococcus aureus, and Enterococcus faecalis), and all extracts inhibit most tested germs that do not have the same MIC and the same sensitivity. Only the PPW showed the minimum bactericidal concentration (MBC) that is equal to 0.290 mg/mL for Salmonella sp and Staphylococcus aureus, which confirms that the extraction by water of the adsorbed polyphenols is an original solution to recover the polyphenols and also to obtain a natural phenolic antioxidant which can be used in the pharmaceutical, nourishment, and cosmetic industry
    corecore