61 research outputs found
Type-II InAsxSb1-x/InAs quantum dots for midinfrared applications: Effect of morphology and composition on electronic and optical properties
InSb-based self-assembled quantum dots are very promising for the midinfrared (3-5μm) optical range. We have analyzed the effect of geometry and composition on the electronic structure and optical spectra of InAsx Sb1-x /InAs dots. The calculated transition energies agree well with the available experimental data. The results show that the geometry of the dot can be estimated from the optical spectra if the composition is known, and vice versa. © 2009 The American Physical Society
On-chip electrically controlled routing of photons from a single quantum dot
Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integrated quantum photonic circuits
Applicability of the kp method to modeling of InAs/GaSb short-period superlattices
We investigate the long-standing controversy surrounding modeling of the electronic spectra of InAs/GaSb short-period superlattices (SPSLs). Most commonly, such modeling for semiconductor heterostructures is based on the kp method. However, this method has so far failed to predict the band structure for type-II InAs/GaSb SPSLs. Instead, it has systematically overestimated the energy gap between the electron and heavy-hole minibands, which led to the suggestion that the kp method is inadequate for these heterostructures. Our results show that the physical origin of the discrepancy between modeling and experimental results may be the graded and asymmetric InAs/GaSb interface profile. We have performed band-structure modeling within the kp method using a realistic interface profile based on experimental observations. Our calculations show good agreement with experimental data, both from our own measurements and from the published literature. © 2009 The American Physical Society
Shot noise of coupled semiconductor quantum dots
The low-frequency shot noise properties of two electrostatically coupled
semiconductor quantum dot states which are connected to emitter/collector
contacts are studied. A master equation approach is used to analyze the bias
voltage dependence of the Fano factor as a measure of temporal correlations in
tunneling current caused by Pauli's exclusion principle and the Coulomb
interaction. In particular, the influence of the Coulomb interaction on the
shot noise behavior is discussed in detail and predictions for future
experiments will be given. Furthermore, we propose a mechanism for negative
differential conductance and investigate the related super-Poissonian shot
noise.Comment: submitted to PR
Magnetic-field-induced singularities in spin dependent tunneling through InAs quantum dots
Current steps attributed to resonant tunneling through individual InAs
quantum dots embedded in a GaAs-AlAs-GaAs tunneling device are investigated
experimentally in magnetic fields up to 28 T. The steps evolve into strongly
enhanced current peaks in high fields. This can be understood as a
field-induced Fermi-edge singularity due to the Coulomb interaction between the
tunneling electron on the quantum dot and the partly spin polarized Fermi sea
in the Landau quantized three-dimensional emitter.Comment: 5 pages, 4 figure
Atomic Ordering in Cubic Bismuth Telluride Alloy Phases at High Pressure
Pressure-induced transitions from ordered intermetallic phases to
substitutional alloys to semi-ordered phases were studied in a series of
bismuth tellurides. Using angle-dispersive x-ray diffraction, the compounds
Bi4Te5, BiTe, and Bi2Te were observed to form alloys with the disordered
body-centered cubic (bcc) crystal structure upon compression to above 14--19
GPa at room temperature. The BiTe and Bi2Te alloys and the previously
discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show
atomic ordering after gentle annealing at very moderate temperatures of
~100{\deg}C. Upon annealing, BiTe transforms from the bcc to the B2 (CsCl)
crystal structure type, and the other phases adopt semi-disordered variants
thereof, featuring substitutional disorder on one of the two crystallographic
sites. The transition pressures and atomic volumes of the alloy phases show
systematic variations across the Bi_mTe_n series including the end members Bi
and Te. First-principles calculations were performed to characterize the
electronic structure and chemical bonding properties of B2-type BiTe and to
identify the driving forces of the ordering transition. The calculated Fermi
surface of B2-type BiTe has an intricate structure and is predicted to undergo
three topological changes between 20 and 60 GPa.Comment: 8 pages, 11 figures, accepted for publication in Phys. Rev.
Acoustic Phonon-Assisted Resonant Tunneling via Single Impurities
We perform the investigations of the resonant tunneling via impurities
embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the
characteristics measured at 30mK, the contribution of individual donors
is resolved and the fingerprints of phonon assistance in the tunneling process
are seen. The latter is confirmed by detailed analysis of the tunneling rates
and the modeling of the resonant tunneling contribution to the current.
Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge
singularities are observed.Comment: accepted in Phys. Rev.
Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots
We adopt an atomistic pseudopotential description of the electronic structure
of self-assembled, lens shaped InAs quantum dots within the ``linear
combination of bulk bands'' method. We present a detailed comparison with
experiment, including quantites such as the single particle electron and hole
energy level spacings, the excitonic band gap, the electron-electron, hole-hole
and electron hole Coulomb energies and the optical polarization anisotropy. We
find a generally good agreement, which is improved even further for a dot
composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
High-pressure vibrational and optical study of Bi2Te3
We report an experimental and theoretical lattice dynamics study of bismuth telluride (Bi2Te3) up to 23 GPa together with an experimental and theoretical study of the optical absorption and reflection up to 10 GPa. The indirect bandgap of the low-pressure rhombohedral (R-3m) phase (α-Bi2Te3) was observed to decrease with pressure at a rate of −6 meV/GPa. In regard to lattice dynamics, Raman-active modes of α-Bi2Te3 were observed up to 7.4 GPa. The pressure dependence of their frequency and width provides evidence of the presence of an electronic-topological transition around 4.0 GPa. Above 7.4 GPa a phase transition is detected to the C2/m structure. On further increasing pressure two additional phase transitions, attributed to the C2/c and disordered bcc (Im-3m) phases, have been observed near 15.5 and 21.6 GPa in good agreement with the structures recently observed by means of x-ray diffraction at high pressures in Bi2Te3. After release of pressure the sample reverts back to the original rhombohedral phase after considerable hysteresis. Raman- and IR-mode symmetries, frequencies, and pressure coefficients in the different phases are reported and discussed.This work has been done under financial support from Spanish MICINN under projects MAT2008-06873-C02-
02, MAT2007-66129, Prometeo/2011-035, MAT2010-21270-C04-03/04, and CSD2007-00045 and supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021627501)
- …