8 research outputs found

    Status and perspectives of short baseline studies

    Full text link
    The study of flavor changing neutrinos is a very active field of research. I will discuss the status of ongoing and near term experiments investigating neutrino properties at short distances from the source. In the next few years, the Double Chooz, RENO and Daya Bay reactor neutrino experiments will start looking for signatures of a non-zero value of the mixing angle θ13\theta_{13} with much improved sensitivities. The MiniBooNE experiment is investigating the LSND anomaly by looking at both the νμ→νe\nu_{\mu} \to \nu_{e} and νˉμ→νˉe\bar{\nu}_{\mu} \to \bar{\nu}_{e} appearance channels. Recent results on cross section measurements will be discussed briefly.Comment: 6 pages, 2 figures, to appear in the proceedings of the 11th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2009), Rome, Italy, 1-5 July 200

    Neutrino Mass and Grand Unification

    Full text link
    Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup SU(2)L×SU(2)R×SU(4)cSU(2)_L\times SU(2)_R\times SU(4)_c.Comment: 17 pages, 5 figures; Invited talk at the Nobel Symposium 129 on Neutrinos at Haga Slott, Sweden, August, 200

    Learning from tau appearance

    Full text link
    The study of numu->nutau oscillation and the explicit observation of the nutau through the identification of the final-state tau lepton ("direct appearance search") represent the most straightforward test of the oscillation phenomenon. It is, nonetheless, the most challenging from the experimental point of view. In this paper we discuss the current empirical evidence for direct appearance of tau neutrinos at the atmospheric scale and the perspectives for the next few years, up to the completion of the CNGS physics programme. We investigate the relevance of this specific oscillation channel to gain insight into neutrino physics within the standard three-family framework. Finally, we discuss the opportunities offered by precision studies of numu->nutau transitions in the occurrence of more exotic scenarios emerging from additional sterile neutrinos or non-standard interactions.Comment: 26 pages, 7 figures, to appear in NJ

    Neutrino physics with JUNO

    No full text
    corecore