387 research outputs found

    Spin frustration and magnetic ordering in theS=12molecular antiferromagnetfcc−Cs3C60

    Get PDF
    We have investigated the low-temperature magnetic state of face-centered-cubic (fcc) Cs3C60, a Mott insulator and the first molecular analog of a geometrically frustrated Heisenberg fcc antiferromagnet with S=1/2 spins. Specific heat studies reveal the presence of both long-range antiferromagnetic ordering and a magnetically disordered state below TN=2.2 K, which is in agreement with local probe experiments. These results together with the strongly suppressed TN are unexpected for conventional atom-based fcc antiferromagnets, implying that the fulleride molecular degrees of freedom give rise to the unique magnetic ground state

    Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions

    Full text link
    We study technicolor models in which all of the technifermions are color-singlets, focusing on the case in these fermions transform according to the fundamental representation of the technicolor gauge group. Our analysis includes a derivation of restrictions on the weak hypercharge assignments for the technifermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable bound states with exotic electric charges. Precision electroweak constraints on these models are also discussed. We determine some general properties of extended technicolor theories containing these technicolor sectors.Comment: 17 pages, latex, 2 figure

    A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al

    Full text link
    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's, their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are however discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff which is broader, and display a tail which is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al, and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl

    Role of Oxygen Electrons in the Metal-Insulator Transition in the Magnetoresistive Oxide La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 Probed by Compton Scattering

    Full text link
    We have studied the [100]-[110] anisotropy of the Compton profile in the bilayer manganite. Quantitative agreement is found between theory and experiment with respect to the anisotropy in the two metallic phases (i.e. the low temperature ferromagnetic and the colossal magnetoresistant phase under a magnetic field of 7 T). Robust signatures of the metal-insulator transition are identified in the momentum density for the paramagnetic phase above the Curie temperature. We interpret our results as providing direct evidence for the transition from the metallic-like to the admixed ionic-covalent bonding accompanying the magnetic transition. The number of electrons involved in this phase transition is estimated from the area enclosed by the Compton profile anisotropy differences. Our study demonstrates the sensitivity of the Compton scattering technique for identifying the number and type of electrons involved in the metal-insulator transition.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Tricritical Behavior in Charge-Order System

    Full text link
    Tricritical point in charge-order systems and its criticality are studied for a microscopic model by using the mean-field approximation and exchange Monte Carlo method in the classical limit as well as by using the Hartree-Fock approximation for the quantum model. We study the extended Hubbard model and show that the tricritical point emerges as an endpoint of the first-order transition line between the disordered phase and the charge-ordered phase at finite temperatures. Strong divergences of several fluctuations at zero wavenumber are found and analyzed around the tricritical point. Especially, the charge susceptibility chi_c and the susceptibility of the next-nearest-neighbor correlation chi_R are shown to diverge and their critical exponents are derived to be the same as the criticality of the susceptibility of the double occupancy chi_D0. The singularity of conductivity at the tricritical point is clarified. We show that the singularity of the conductivity sigma is governed by that of the carrier density and is given as |sigma-sigma_c|=|g-g_c|^{p_t}Alog{|g-g_{c}|}+B), where g is the effective interaction of the Hubbard model, sigma_c g_c represents the critical conductivity(interaction) and A and B are constants, respectively. Here, in the canonical ensemble, we obtain p_t=2beta_t=1/2 at the tricritical point. We also show that p_t changes into p_{t}'=2beta=1 at the tricritical point in the grand-canonical ensemble when the tricritical point in the canonical ensemble is involved within the phase separation region. The results are compared with available experimental results of organic conductor (DI-DCNQI)2Ag.Comment: 20 pages, 32 figures, to appear in J. Phys. Soc. Jpn. Vol.75(2006)No.

    Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering

    Full text link
    Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.Comment: 5pages, 3 postscript figure

    A Novel 2D Folding Technique for Enhancing Fermi Surface Signatures in the Momentum Density: Application to Compton Scattering Data from an Al-3at%Li Disordered Alloy

    Full text link
    We present a novel technique for enhancing Fermi surface (FS) signatures in the 2D distribution obtained after the 3D momentum density in a crystal is projected along a specific direction in momentum space. These results are useful for investigating fermiology via high resolution Compton scattering and positron annihilation spectroscopies. We focus on the particular case of the (110) projection in an fcc crystal where the standard approach based on the use of the Lock-Crisp-West (LCW) folding theorem fails to give a clear FS image due to the strong overlap with FS images obtained through projection from higher Brillouin zones. We show how these superposed FS images can be disentangled by using a selected set of reciprocal lattice vectors in the folding process. The applicability of our partial folding scheme is illustrated by considering Compton spectra from an Al-3at%Li disordered alloy single crystal. For this purpose, high resolution Compton profiles along nine directions in the (110) plane were measured. Corresponding highly accurate theoretical profiles in Al-3at%Li were computed within the local density approximation (LDA)-based Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) first-principles framework. A good level of overall accord between theory and experiment is obtained, some expected discrepancies reflecting electron correlation effects notwithstanding, and the partial folding scheme is shown to yield a clear FS image in the (110) plane in Al-3%Li.Comment: 24 pages, 8 figures, to appear in Phys. Rev.

    Bonding of self-etch and total-etch adhesives to carious dentin

    Get PDF
    published_or_final_versio
    • 

    corecore