388 research outputs found
Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions
We study technicolor models in which all of the technifermions are
color-singlets, focusing on the case in these fermions transform according to
the fundamental representation of the technicolor gauge group. Our analysis
includes a derivation of restrictions on the weak hypercharge assignments for
the technifermions and additional color-singlet, technisinglet fermions arising
from the necessity of avoiding stable bound states with exotic electric
charges. Precision electroweak constraints on these models are also discussed.
We determine some general properties of extended technicolor theories
containing these technicolor sectors.Comment: 17 pages, latex, 2 figure
Spin frustration and magnetic ordering in theS=12molecular antiferromagnetfccâCs3C60
We have investigated the low-temperature magnetic state of face-centered-cubic (fcc) Cs3C60, a Mott insulator and the first molecular analog of a geometrically frustrated Heisenberg fcc antiferromagnet with S=1/2 spins. Specific heat studies reveal the presence of both long-range antiferromagnetic ordering and a magnetically disordered state below TN=2.2 K, which is in agreement with local probe experiments. These results together with the strongly suppressed TN are unexpected for conventional atom-based fcc antiferromagnets, implying that the fulleride molecular degrees of freedom give rise to the unique magnetic ground state
A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al
We report high-resolution Compton profiles (CP's) of Al along the three
principal symmetry directions at a photon energy of 59.38 keV, together with
corresponding highly accurate theoretical profiles obtained within the
local-density approximation (LDA) based band-theory framework. A good accord
between theory and experiment is found with respect to the overall shapes of
the CP's, their first and second derivatives, as well as the anisotropies in
the CP's defined as differences between pairs of various CP's. There are
however discrepancies in that, in comparison to the LDA predictions, the
measured profiles are lower at low momenta, show a Fermi cutoff which is
broader, and display a tail which is higher at momenta above the Fermi
momentum. A number of simple model calculations are carried out in order to
gain insight into the nature of the underlying 3D momentum density in Al, and
the role of the Fermi surface in inducing fine structure in the CP's. The
present results when compared with those on Li show clearly that the size of
discrepancies between theoretical and experimental CP's is markedly smaller in
Al than in Li. This indicates that, with increasing electron density, the
conventional picture of the electron gas becomes more representative of the
momentum density and that shortcomings of the LDA framework in describing the
electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl
Role of Oxygen Electrons in the Metal-Insulator Transition in the Magnetoresistive Oxide LaSrMnO Probed by Compton Scattering
We have studied the [100]-[110] anisotropy of the Compton profile in the
bilayer manganite. Quantitative agreement is found between theory and
experiment with respect to the anisotropy in the two metallic phases (i.e. the
low temperature ferromagnetic and the colossal magnetoresistant phase under a
magnetic field of 7 T). Robust signatures of the metal-insulator transition are
identified in the momentum density for the paramagnetic phase above the Curie
temperature. We interpret our results as providing direct evidence for the
transition from the metallic-like to the admixed ionic-covalent bonding
accompanying the magnetic transition. The number of electrons involved in this
phase transition is estimated from the area enclosed by the Compton profile
anisotropy differences. Our study demonstrates the sensitivity of the Compton
scattering technique for identifying the number and type of electrons involved
in the metal-insulator transition.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Tricritical Behavior in Charge-Order System
Tricritical point in charge-order systems and its criticality are studied for
a microscopic model by using the mean-field approximation and exchange Monte
Carlo method in the classical limit as well as by using the Hartree-Fock
approximation for the quantum model. We study the extended Hubbard model and
show that the tricritical point emerges as an endpoint of the first-order
transition line between the disordered phase and the charge-ordered phase at
finite temperatures. Strong divergences of several fluctuations at zero
wavenumber are found and analyzed around the tricritical point. Especially, the
charge susceptibility chi_c and the susceptibility of the next-nearest-neighbor
correlation chi_R are shown to diverge and their critical exponents are derived
to be the same as the criticality of the susceptibility of the double occupancy
chi_D0. The singularity of conductivity at the tricritical point is clarified.
We show that the singularity of the conductivity sigma is governed by that of
the carrier density and is given as
|sigma-sigma_c|=|g-g_c|^{p_t}Alog{|g-g_{c}|}+B), where g is the effective
interaction of the Hubbard model, sigma_c g_c represents the critical
conductivity(interaction) and A and B are constants, respectively. Here, in the
canonical ensemble, we obtain p_t=2beta_t=1/2 at the tricritical point. We also
show that p_t changes into p_{t}'=2beta=1 at the tricritical point in the
grand-canonical ensemble when the tricritical point in the canonical ensemble
is involved within the phase separation region. The results are compared with
available experimental results of organic conductor (DI-DCNQI)2Ag.Comment: 20 pages, 32 figures, to appear in J. Phys. Soc. Jpn.
Vol.75(2006)No.
Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering
Metallic liquid silicon at 1787K is investigated using x-ray Compton
scattering. An excellent agreement is found between the measurements and the
corresponding Car-Parrinello molecular dynamics simulations. Our results show
persistence of covalent bonding in liquid silicon and provide support for the
occurrence of theoretically predicted liquid-liquid phase transition in
supercooled liquid states. The population of covalent bond pairs in liquid
silicon is estimated to be 17% via a maximally-localized Wannier function
analysis. Compton scattering is shown to be a sensitive probe of bonding
effects in the liquid state.Comment: 5pages, 3 postscript figure
A Novel 2D Folding Technique for Enhancing Fermi Surface Signatures in the Momentum Density: Application to Compton Scattering Data from an Al-3at%Li Disordered Alloy
We present a novel technique for enhancing Fermi surface (FS) signatures in
the 2D distribution obtained after the 3D momentum density in a crystal is
projected along a specific direction in momentum space. These results are
useful for investigating fermiology via high resolution Compton scattering and
positron annihilation spectroscopies. We focus on the particular case of the
(110) projection in an fcc crystal where the standard approach based on the use
of the Lock-Crisp-West (LCW) folding theorem fails to give a clear FS image due
to the strong overlap with FS images obtained through projection from higher
Brillouin zones. We show how these superposed FS images can be disentangled by
using a selected set of reciprocal lattice vectors in the folding process. The
applicability of our partial folding scheme is illustrated by considering
Compton spectra from an Al-3at%Li disordered alloy single crystal. For this
purpose, high resolution Compton profiles along nine directions in the (110)
plane were measured. Corresponding highly accurate theoretical profiles in
Al-3at%Li were computed within the local density approximation (LDA)-based
Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)
first-principles framework. A good level of overall accord between theory and
experiment is obtained, some expected discrepancies reflecting electron
correlation effects notwithstanding, and the partial folding scheme is shown to
yield a clear FS image in the (110) plane in Al-3%Li.Comment: 24 pages, 8 figures, to appear in Phys. Rev.
- âŠ