25 research outputs found

    Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients

    Get PDF
    Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients. To elucidate the mechanism of resistance of hypoalbuminemic patients to furosemide, the effect of this diuretic on urine volume of normal and analbuminemic rats (NAR) and of hypoalbuminemic patients was studied. Intravenous administration of furosemide rapidly enhanced sodium diuresis in normal rats but not in NAR. Total plasma clearance and distribution volume of furosemide were much larger in NAR than in normal rats, while no significant difference in these pharmacokinetic parameters was observed for the unbound fraction of the diuretic between the two animal groups. In contrast, urinary secretion of furosemide was significantly lower in NAR than in normal rats. Injected furosemide bound to albumin markedly promoted diuresis in NAR, while the same dose of albumin alone had no effect, indicating that binding to albumin is essential for the delivery of furosemide to the kidney, the site for its action. Injection of the complex rapidly increased the urine volume of hypoalbuminemic patients who showed a marked resistance to this diuretic. Thus, the resistance to furosemide in both NAR and hypoalbuminemic patients may be explained on the same basis

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix

    Extension of the operational regime of the LHD towards a deuterium experiment

    Get PDF
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value β\left\langle \beta \right\rangle . The high β\left\langle \beta \right\rangle regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region

    Heat Deposition on the Partial Limiter

    No full text

    Polarizers with non-rectangular grooves for high power millimeter waves

    No full text
    Polarizers with non-rectangular grooves are studied in high power millimeter wave transmission lines for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) of fusion plasmas. The groove shape is important for determining the polarization parameters and avoiding arc breakdown in the system. A low-power measurement has been carried out for several polarizers with different groove depths. The polarization characteristics experimentally measured are in good agreement with numerical results in which the actual groove shape is taken into account. The polarizers are designed and applied to different frequencies of ECH/ECCD systems. Favorable results have been obtained in high-power transmission up to 500 kW, 0.2 s
    corecore