4 research outputs found

    Evaluating the impact of new aircraft separation minima on available airspace capacity and arrival time delay

    No full text
    Although the application of new, reduced aircraft separation minima can directly increase runway throughput, the impact thereof on the traffic flow of aircraft arriving at the destination airport has not been discussed yet. This paper proposes a data-driven and queue-based modeling approach and presents an analysis of the impact on the delay time of arriving aircraft in the airspace within a radius of 100 nautical miles around an airport. The parameters of our queuing model were estimated by analysing the data contained in the radar tracks and flight plans for flights that arrived at Tokyo International Airport during the 2 years of 2016 and 2017. The results clarified the best arrival strategy according to the distance from the arrival airport: The combination of airspace capacity control and reduction of the flight time and separation variance is the most powerful solution to mitigate delays experienced by arriving traffic while also allowing an increase in the amount of arrival traffic. The application of new wake vortex categories would enable us to increase the arrival traffic to 120%. In addition, the arrival delay time could be minimised by implementing the proposed arrival traffic strategies together with automation support for air traffic controllers.Aerospace Transport & Operation

    Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout

    No full text
    Silicon quantum dot spin qubits provide a promising platform for large-scale quantum computation because of their compatibility with conventional CMOS manufacturing and the long coherence times accessible using 28Si enriched material. A scalable error-corrected quantum processor, however, will require control of many qubits in parallel, while performing error detection across the constituent qubits. Spin resonance techniques are a convenient path to parallel two-axis control, while Pauli spin blockade can be used to realize local parity measurements for error detection. Despite this, silicon qubit implementations have so far focused on either single-spin resonance control, or control and measurement via voltage-pulse detuning in the two-spin singlet-triplet basis, but not both simultaneously. Here, we demonstrate an integrated device platform incorporating a silicon metal-oxide-semiconductor double quantum dot that is capable of single-spin addressing and control via electron spin resonance, combined with high-fidelity spin readout in the singlet-triplet basis.QCD/Veldhorst LabQuTec

    Coherent control via weak measurements in P 31 single-atom electron and nuclear spin qubits

    No full text
    The understanding of weak measurements and interaction-free measurements has greatly expanded the conceptual and experimental toolbox to explore the quantum world. Here we demonstrate single-shot variable-strength weak measurements of the electron and nuclear spin states of a P31 single-atom donor in silicon. We first show how the partial collapse of the nuclear spin due to measurement can be used to coherently rotate the spin to a desired pure state. We explicitly demonstrate that phase coherence is preserved with high fidelity throughout multiple sequential single-shot weak measurements and that the partial state collapse can be reversed. Second, we use the relation between measurement strength and perturbation of the nuclear state as a physical meter to extract the tunnel rates between the P31 donor and a nearby electron reservoir from data conditioned on observing no tunneling events. Our experiments open avenues to measurement-based state preparation, steering and feedback protocols for spin systems in the solid state, and highlight the fundamental connection between information gain and state modification in quantum mechanics.QCD/Vandersypen La
    corecore